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Abstract: Identification of new hits is one of the biggest challenges in drug discovery. 

Creating a library of well-characterized drug-like compounds is a key step in this 

process. Our group has developed an in-house chemical library called Medicinal and 

Biological Chemistry (MBC) library. This collection has been successfully used to start 

several medicinal chemistry programs and developed in an accumulation of more than 

thirty years of experience in drug design and discovery of new drugs for unmet diseases. 

It contains over 1,000 compounds, mainly heterocyclic scaffolds. In this work, an 

analysis of drug-like properties and comparative study with well-known libraries by 

using different computer software is here presented. 

  



INTRODUCTION 
The development of a new drug, from the lab to the market, is a complex 

process that can last 12–15 years and can cost in excess of $1 billion.1 During this 

process there are a number of bottlenecks,2 such as the ability to obtain drug-like 

compounds. Because of the length of time and the high cost involved in the drug-

discovery process, there is a growing impact of chemical databases in the drug  

discovery industry.3 During recent years, chemical databases have evolved from a 

simple repository of synthesized compounds to an important research tool for the 

discovery of new hits and lead compounds. This is due to the fact that the availability of 

samples for virtual or experimental screening is of great importance for the 

identification of new hits, and the quality of these samples is crucial for a successful 

drug discovery program.4  

Traditionally, databases have contained only chemical structures. Such databases 

support the organization of information within a company or, in the most pragmatic 

cases, for virtual screening purposes.5 However, in recent decades the amount of 

information held in databases has greatly increased, including information about 

structure, ADMET (absorption, distribution, metabolism, excretion and toxicity) 

characteristics and physicochemical parameters (such as logP values, polar surface area 

[PSA], and hydrogen bond acceptors and donors [HBA and HBD, respectively]). These 

data are very useful to use as filters in order to obtain structures with acceptable drug-

like profiles. 

It has been widely accepted that the physicochemical profiles of oral drugs can 

be evaluated using the Lipinski rule of five.6 In this sense, multiple studies have 

identified a relationship between the physicochemical properties of compounds — such 

as size, polarity, or lipophilicity — and failure of drug candidates during the drug 

discovery process.7 These studies have suggested benefits that come from controlling 

general physicochemical properties in terms of reducing the probability of attrition in 

drug candidates, and they are based on the analysis of datasets taking as references 

approved oral drugs and compounds in preclinical and clinical studies.8  

Physicochemical properties are not only critical for understanding the ADME 

profile of compounds, but a correlation has also been found between these properties 

and drug promiscuity and in vivo toxicology results.9-10 One of the most interesting 

findings of these studies, carried out by the pharmaceutical company Pfizer, led to the 



observation of a link between logP and PSA values and toxicology in preclinical in vivo 

studies.11 Furthermore, due to the importance of biological information about small 

molecules that can enable many types of drug discovery analyses and decision making, 

most chemical databases have begun to include biological assay results. This allows for 

relevant information to be collected and made easily accessible to biochemical 

researchers and for drug-discovery purposes.  

Our Medicinal and Biological Chemistry (MBC) laboratory has developed an in-

house chemical library, which at the time of this study contained 1,096 compounds with 

a standard chemical purity of at least 95% by HPLC (Figure 1). These are compounds 

synthesized and characterized by our group, and it is based on more than thirty years of 

medicinal chemistry research. Our compounds have been designed mainly as potential 

drugs for neurological and neurodegenerative diseases. The chemical library is available 

both electronically and physically on request.  

 
Figure 1. Representative set of the different families of MBC library 

 

We are continuing to expand our chemical library by developing novel chemical 

series for different purposes that will target neglected or infectious diseases, among 

others. To illustrate the utility of the MBC library, we have identified, based both on 

different phenotypic and virtual screening campaigns, new targets and drug candidates 

for the treatment of Parkinson’s disease12-13 and new protein kinase14 or 

phosphodiesterease15-16 inhibitors with great value for neurological diseases. The main 

aim of this work is to characterize the MBC library, with particular attention to drug-



likeness and physicochemical properties, and to compare the MBC library with selected 

well-known chemical databases. 

 

MATERIAL AND METHODS 
Ligand preparation 

All of the compounds from our in-house chemical library were exported to an 

excel format file (see Supporting Information) and were imported into Maestro 9.917 

visualizer. The preparation of the library and the 2D-to-3D conversion was performed 

using the LigPrep18 tool, a module of the Schrödinger software package. LigPrep allows 

different preparation steps of molecules such as the addition of hydrogen atoms, 

neutralization of charged groups, generation of ionization states, alternative chiral 

centers, low-energy ring conformations, options for generating multiple states and 

possible tautomers, followed by energy minimization using OPLS-2005 force field.19-20 

In order to carry out our studies, no possible ionizationed compounds were generated 

(as the compounds were in the most suitable ionization state for physiological pH 

conditions), all of the compounds were desalting, and no tautomers were generated. 

Moreover, one stereoisomer and one low energy ring conformation was generated per 

ligand. The last step was to minimize the compounds.  

Ligand characterization 

All of the prepared compounds were analyzed using the Qikprop21 module of the 

small-molecule drug discovery suite in the Schrödinger software package. ADME 

properties were predicted using the QikProp program. QikProp was able to calculate 

and predict a total of 44 properties that helped to filter compounds with clear-cut, 

undesirable properties for drug discovery. Examples of such properties included 

molecular weight, molecular volume, number of HBD, number of HBA, PSA, 

QPlogPo/w (predicted octanol/water partition coefficient) and violations related to 

Lipinski’s rule of five22 and Jorgensen’s rule of three.23 Table 1 displays the parameters 

and corresponding ranges.  

 

 

 

 

 



 

Table 1. Qikprop parameters and their corresponding ranges  

Property of 
descriptor 

Description Range or 
recommended 

values 
Mol_MW Molecular weight of the molecule. 130–725 
QPlogPo/w Predicted octanol/water partition coefficient. -2.0–6.5 
#stars Number of property or descriptor values that fall 

outside of the 95% range of similar values for 
known drugs. A large number of stars suggest that 
a molecule is less drug-like than molecules with 
few stars. The following properties and descriptors 
are included in the determination of the number of 
stars: MW, dipole, IP, EA, SASA, FOSA, FISA, 
PISA, WPSA, PSA, volume, #rotor, donorHB, 
accptHB, glob, QPpolrz, QPlogPC16, QPlogPoct, 
QPlogPw, QPlogPo/w, QlogS, QPLogKhsa, 
QPlogBB, #metabol. 

0–5 

#rotor Number of non-trivial (not CX3), non-hindered 
(not alkene, amide, small ring) rotatable bonds.  

0–15 

accptHB Estimated number of hydrogen bonds that would 
be accepted by the solute from water molecules in 
an aqueous solution. Values are averages taken 
over a number of configurations, so they can be 
non-integer. 

2–20 

donorHB Estimated number of hydrogen bonds that would 
be donated by the solute to water molecules in an 
aqueous solution. Values are averages taken over 
a number of configurations, so they can be non-
integer. 

0–6 

QPlogS Predicted aqueous solubility, log S. S in mol/dm–3 
is the concentration of the solute in a saturated 
solution that is in equilibrium with the crystalline 
solid 

-6.5–0.5 

Percentage 
HumanOral 
Absortion 

Predicted human oral absorption. The prediction is 
based on a quantitative multiple linear regression 
model. 

>80% is high and 
<25% is very poor 

QPlogBB Predicted brain/blood partition coefficient. 
Predictions are for drugs delivered orally. 

-3.0 S in mol dm–
31.2 

Abbreviations: MW (molecular weight); IP (PM3 calculated ionization potential); EA (PM3 calculated 
electron affinity);  SASA (solvent accessible surface area); FOSA (Hydrophobic component of the SASA);  FISA 
(Hydrophilic component of the SASA); PISA (p component of the SASA); WPSA (Weakly polar component of 
the SASA); PSA (Van der Waals surface area of polar nitrogen and oxygen atoms); donorHB (dono hydrogen 
bond); accptHB (acceptor hydrogen bond); glob (Globularity descriptor); QPpolrz (Predicted polarizability); 
QPlogPC16 (Predicted hexadecane/gas partition coefficient ); QPlogPoct (Predicted octanol/gas partition 
coefficient); QPlogPw (Predicted water/gas partition coefficient); QPlogPo/w (Predicted octanol/water partition 
coefficient); QlogS (Predicted aqueous solubility); QPLogKhsa (Prediction of binding to human serum 
albumin);QPlogBB (Predicted brain/blood partition coefficient); #metabol (Number of likely metabolic reactions). 
 

 



 

Databases 

DrugBank version 4.3, ChEMBL version 20, ZINC, and PubChem databases 

were downloaded from respective websites in 2016.  

Processing of molecules 

All cheminformatics calculations were performed using a bespoke java program 

developed based on the JChem chemistry library from ChemAxon Pvt. Ltd 

(https://www.chemaxon.com/). Molecules were processed as non-stereo simplified 

molecular-input line-entry systems (SMILES), counter ions were removed, valence 

errors were checked, and protonation states of molecules were adjusted at pH 7.4. All 

duplicate molecules were removed in the context of each database. The molecular 

properties such as heavy atom count (HAC), molecular weight (MW), HBD and HBA, 

octanol/water partition coefficient (logP), rotatable bond count (RBC), fraction of 

aromatic (fAromA) and sp3 carbons (fsp3) were calculated using various plugins — 

such as HBDAPlugin, TopologyAnalyserPlugin, and logPPlugin — from the JChem 

library. The number of unique and common molecules between different databases were 

calculated based on SMILES string comparisons.  

Scaffold analysis 

Bemis–Murcko scaffold (BMS) analysis was performed for MBC and other 

publicly available databases using a bespoke program that utilized the JChem chemistry 

library from ChemAxon Pvt. Ltd. For all molecules in each database, BMS scaffolds 

were calculated using the “StructuralFrameworksPlugin” from JChem and then stored 

in a unique SMILES format. Finally, the numbers of unique and common scaffolds 

between different databases were computed based on SMILES string comparisons.  

 

RESULTS AND DISCUSSION 
Characterization of MBC chemical library 

As mentioned in the introduction, the successful development of new drugs 

critically depends on the ADME/tox properties of chemical compounds. These 

properties are crucial to be able to narrow the search for promising new chemical 

entities24 in the early phases of drug discovery. By monitoring these properties during 

lead optimization, medicinal chemists may be able to reduce the exaggerated attrition 

rate in the drug discovery process. 



With this concern in mind, our research group has been developing the MBC 

library. The main feature of this in-house chemical library is the common therapeutic 

profile of the compounds (that is, most of them are designed for the treatment of 

neurological and neurodegenerative diseases). Currently, 1,096 compounds are part of 

the database, which correspond to different alkyl and heterocyclic chemical families 

(Figure 1).  

The information about the drug-like properties that are present in the MBC 

library was analyzed using the QikProp module21 (Schrödinger Software Modules). 

After all of the compounds were prepared and characterized, we calculated the different 

physicochemical properties for further analyses (Table 2). 

More than twenty relevant molecular descriptors were calculated by QikProp 

and were used to define the stars parameter, as detailed in Table 1. A large number of 

stars (that is, a number greater than five, as determined by the stars index) suggests that 

a molecule does not have the characteristics required of a desired drug; a value less than 

five on the stars index indicates a molecule that is similar to the vast majority of drugs 

used in a clinical setting. The values of the most relevant descriptors from the MBC 

library are shown in Table 2. Of the 1,096 compounds, only 12 molecules fall outside of 

the 95% range for values for known drugs, which represents only 1% of the compounds 

in our chemical library. In that sense we can affirm that, according to these predictions, 

99% of the compounds that are present in our library have a physicochemical profile 

that is in line with known drugs that have been approved for human pharmacological 

treatments. 

 

Table 2. Pharmacokinetic properties of MCB library analyzed by QikProp module.  

LIPINSKI’S RULE OF FIVE  Prediction of LogP 
0 violations 84.5% (927)*  ≤5 77.6% (851) 
1 violation 98.3% (1078)  >5 22.4% (245) 

JORGENSEN’S RULE OF THREE  Prediction of LogS 
0 violations 76.7% (841)  -12.0/-7.0 6.3% (69) 
1 violation 99.2% (1088)  -6.9/-3.0 72.2% (791) 

Molecular Weight (Da)  -2.9/2.0 21.5% (236) 
0/200 8.6% (94)  Number of Heavy Atoms 

201/300 37.3% (409)  0/15 15.6% (171) 
301/400 40.0% (438)  16/30 78.4% (859) 
401/500 12.1% (133)  >30 6% (66) 

>500 2.0% (22)  Number of Aromatic rings 
Number of rotatable bonds  0/1 11.8% (129) 
0-5 82.5% (904)  2/3 79.4% (870) 



6-10 16.5% (181)  >3 8.8% (96) 
>10 1.0% (12)  Prediction of BBB pass 

Number of donor Hydrogen bonds 
groups 

 -3.0/-1.0 16.4% (180) 

≤5 100% (1096)  -0.9/1.0 83.6% (916) 
>5 0% (0)  Prediction of Percent of Human Oral 

Absorption 
Number of acceptor Hydrogen bonds 

groups 
 0%-50% 1.5% (17) 

≤10 99% (1085)  51%-75% 9.0% (98) 
>10 1% (11)  76%-100% 89.5% (981) 

* Numbers into brackets point the nº of compounds. 

 

 

When we analyzed Table 2 in detail, it showed that most of the molecules meet 

the criteria for each physicochemical parameter. Of the 1,096 compounds, 84.5% of the 

molecules have no violations of Lipinski’s rule of five, and over 98% have less than two 

violations (that is, either zero violations or one violation); molecules with these ranges 

are considered to have a great profile for drug-likeness. In the same sense, for 

Jorgensen’s rule of three, according to predictions, over 76% have no violations while 

more than 99% present with either zero violations or one violation. 

Properties as size of the molecules, capacity to form hydrogen bond, 

lipophilicity or flexibility are important to establish a good drug-like profile. Figure 2 

presents different 3D-plots that show the variability of the compounds in the MBC 

library in terms of physicochemical properties (on the x and y-axis) and the stars 

parameter index (colored). Analyses of the distribution of these variables as MW 

against lipophilicity (logP), RBC, or HBA and HBD has revealed that almost all of the 

compounds within the MCB library meet the criteria (Table 1) to be drug-like 

compounds.  

Lipophilicity influences a number of physiological properties including transport 

through cell membranes, rate of metabolism, and interaction with receptor binding sites. 

Because of that, logP is a key parameter for the drug discovery process (Figure 2). The 

dispersion of logP against MW shows that logP values of most of the compounds are 

within the range of -1.0 to 6.0. 

Molecular flexibility is an important property that is dependent on the RBC. 

This parameter contains information on a compound’s conformational space. This 

implicit information is indirect and very limited, but it suggests that conformational 



behavior matters not only in pharmacodynamics events — such as drug target 

recognition — but also from an ADME perspective. It has been reported that problems 

with high molecule flexibility cause a decrease in bioavailability25 and the rate of 

transport across cell membranes, which limits the achievable binding affinity to the 

pharmacological target. The distribution of the RBC shows the degree of 

conformational flexibility. Most of the molecules show an RBC between two and eight. 

Similar dispersions are shown with the other properties, such as HBA (<10) and HBD 

(>5), which the values are into the expected range for drug-like compounds (Figure 2). 
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Figure 2. Dispersion of the MBC chemical compounds regarding MW and stars 
parameter (coloured) and log P (up, left), rotatable bonds (up, right) hydrogen bonds 
acceptors (down, left) and hydrogen bonds donors (down, right) respectively. 

 

The solubility (logS) of a compound influences absorption and blood brain 

barrier permeation, among other properties. Figure 3 shows the distribution of MBC 



chemical compounds with regard to logS. We used this information to analyze its 

influence on oral absorption (OA) and the brain–blood partition coefficient (logBB). 

When we analyzed these plots together with the information in Table 1, we concluded 

that 89% of the compounds in MBC library show more than 76% of absorption for oral 

drugs, and approximately 84% are within the recommended range for the predicted 

logBB (−0.9 to 1.0). Regarding the solubility of the compounds and their influence on 

in ADME properties, it can be seen that solubility values are in an acceptable range, 

which potentially translates to a good oral absorption and good logBB parameters.  

The solubility (log S) of a compound influences on absorption and blood brain barrier 

permeation, among other properties. Figure 3 shows the distribution of MBC chemical 

compounds regarding log S in order to analyze its influence oral absorption (OA) and 

brain/blood partition coefficient (logBB). Analyzing these plots together with the Table 

1 we can conclude that the 89% of the compounds in MBC library present over 76% of 

absorption for oral drugs and around 84% fall within the recommended range for the 

predicted logBB (−0.9 to 1.0). Regarding the solubility of the compounds and its 

influence in ADME properties, it can be seen that the solubility is in an acceptable 

range, would potentially translate into a good oral absorption and logBB parameters.  

Figure 3. Dispersion of the MBC chemical compounds regarding solubility properties. 
Plot of MW (y-axis) and log S (x-axis) and oral absorption percentage is shown 
coloured (left). Plot of log S (y-axis) and logBB (x-axis)) and oral absorption 
percentage is shown coloured (right). 
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Comparative study 

To complete the characterization of the MBC library, four different well-known 

chemical libraries that are often used in drug discovery processes were selected for 

comparison: ZINC, ChEMBL, PubChem, and the DrugBank. ZINC26-27 is a freely 

available database of commercially available compounds. It was developed by the 

Department of Pharmaceutical Chemistry at the University of California, San Francisco 

(UCSF), and it contains a constantly growing number of 3D structures that are ready to 

dock. The new version, ZINC15, contains over 120 million purchasable “drug-like” 

compounds, of which around 30 million are available for immediate delivery. Each 

molecule also contains molecular properties (size, calculated logP values, hydrogen 

bond, or rotatable bonds) and purchasable information.  

ChEMBL28 is an open-source database developed by the European 

Bioinformatics Institute (EMBL-EBI) in Cambridge (UK). The data is manually 

collected from the literature and further standardized to optimize the data quality and 

utility across a wide range of chemical, biological, and drug discovery research 

problems. ChEMBL also contains structures and annotation from the U.S. Food and 

Drug Administration (FDA). Information about approved products (from the FDA 

Orange Book), including dosage information and administration routes, is included in 

the database. Also included are screening results and bioactivity data from other public 

databases such as PubChem Bioassay. This database contains binding, functional, and 

ADMET information for a large number of drug-like bioactive compounds. Currently, 

the database contains over 13.9 million bioactivity measurements for more than 1.9 

million compounds and over 11,000 protein targets.  

PubChem29-30 is a database of chemical molecules and their activities in different 

biological assays. The system is maintained by the National Center for Biotechnology 

Information (NCBI), which is part of the U.S. National Institutes of Health (NIH). 

PubChem is comprised of three linked databases: PubChem Compound, PubChem 

Substance, and PubChem Bioassay. PubChem Compound contains the structure of over 

82 million pure and characterized compounds and their molecular properties. PubChem 

Substance contains descriptions of chemical samples — for example, mixtures, extracts, 

complexes, and uncharacterized substances — and links to articles, protein 3D 

structures, and biological screening results available in PubChem BioAssay.  

The DrugBank31 is a freely available database that includes detailed drug 

information and data related to drug targets such as sequence, 3D structure, and 



metabolic pathways. The database contains 8,206 drug entries, of which 1,991 are FDA-

approved small-molecule drugs, 207 FDA-approved biotech (protein/peptide) drugs, 93 

nutraceuticals, and over 6,000 experimental drugs. Additionally, 4,333 non-redundant 

protein sequences are linked to these drug entries. Each DrugCard entry contains more 

than 200 data fields, with half of the information being devoted to drug and chemical 

data and the other half to drug-target or protein data. 

Comparisons between our MBC library and the databases described above were 

carried out using a bespoke java program. The visualization of the properties was 

performed using molecular quantum numbers (MQN)-Mapplet software.32 This 

software allowed us to visualize a 42-dimensional property space defined by 42 MQN 

integer value descriptors; these descriptors count different categories of atoms, bonds, 

polar groups, and topological features, and they categorize molecules by size, rigidity, 

and polarity. Figure 4 shows an example of these colors maps indicating the occupancy 

of the compounds in terms of properties. 

	
Figure 4. MQN PC1-PC2 maps of MBC library. Maps are color coded according to 
occupancy of compounds (a), heavy atom count (b) and no. of rings (c) in molecules. 
Color changes from blue to cyan to green to yellow to red with the increasing property 
values. PC1 and PC2 cover 62% and 19% of variance, respectively.  

 

 

Figure 5 displays a comparison of different properties (heavy atom count, MW, 

HBSA and HBD, logP, RBC, fraction of aromatic atoms, and the fraction of sp3 

carbons [sp3C]) between our library and the commercial ones. 

According to the data obtained for MW, most molecules of the chemical 

libraries that were analyzed were in the range of Lipinski’s rule of five (that is, less than 

500 Da); in comparison, most marketed drugs have values of less than 500 Da. 

Moreover, the MBC database is the database that fits best with this parameter (Figure 

5b). 
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In the case of HBD and HBA properties, these are also in agreement with 

Lipinski’s rule of five and in the range of more than 95% of drugs in clinical use, taking 

into account values of 0.0–6.0 for HBD and 2.0–20.0 for HBA. The curve obtained for 

the MBC chemical library is very similar to previously published curves (Figure 5c and 

5d). Regarding lipophilicity, the logP parameter remained in the range of -2.0 to 6, as 

was expected for more than 95% of known drugs. Also, for the MBC chemical library, 

the distribution of these values was almost identical when compared to the other 

databases (Figure 5e). Furthermore, some authors agree that a rotatable bond of less 

than seven in a molecule is the optimal value for this parameter in order to be 

considered a lead for possible drug development. The MBC database was found to be 

the best one when this parameter was analyzed (Figure 5f). 

Finally, the fsp3C and the fraction of aromatic carbons (fArom) were analyzed 

and compared. These two parameters relate to two important physical properties: 

melting point and solubility. Molecules that are more highly complex, as measured by 

saturation, have the capacity to access greater chemical space. The 3D structure that is 

conferred by the saturation may also result in greater selectivity. Furthermore, saturation 

increased the likelihood of higher solubility and lower melting points, which are 

properties that are more likely to lead to drugs that are clinically successful (Figure 5g 

and 5h). 



 
 
Figure 5. Histogram of molecular properties showing comparison of MBC library with 
publicly available chemical databases such as DrugBank, ChEMBL, ZINC and 
PubChem. The labels of y-axis of all histogram is the fraction of database and x-axis is 
a) Heavy Atom count (all non-hydrogen atoms in molecule), b) Molecular weight, c) 
Hydrogen Bond Donor atoms, d) Hydrogen Bond Acceptor atoms, e) calculated logP, f) 
Rotatable Bond Count, g) fraction of aromatic atoms in molecule (0=no aromatic atoms, 
1=all atoms in molecule are aromatic), h) fraction of Sp3 hybridized carbons in 
molecule.  

 

To characterize our library in terms of diversity and novelty, an analysis of the 

different scaffolds present in the MBC was performed. We compared the diversity of 



the library using various fingerprints. The results showed that 49 different chemical 

scaffolds were found in the analysis (Figure 6).  

 
Figure 6. Bemis-Murcko scaffold distribution in MBC library 

 

Finally, we investigated the number of compounds in the MBC library that were 

novel with respect to other databases. Table 3 shows the number compounds that were 

unique and the number of compounds and scaffolds that held a commonality between 

the MBC library and the other libraries (Table 3). This study described the novelty of 

the MBC in terms of structures and scaffolds. For example, we can see that of the 1,096 

compounds in the MBC library, 361 compounds were only in the MBC library; this 

number takes into account the merger of all the compounds of the four commercial 

databases (65,516,032). Regarding new scaffolds, the MBC library had 71 unique 

scaffolds in the context of the number of scaffolds combined in all four of the other 

databases (9,827,834). Therefore, we can affirm that the MBC chemical library has both 

novel compounds and scaffolds when considered in the context of other well-known 

databases. 

Table 3. Comparison of MBC with other chemical libraries 

Database1 
Number of 
compounds 

Compounds 
UNQ 

Compounds 
COMMON 

MBC 1,096 0 1,096 
DrugBank 6,637 1,058 3 
ChEMBL.20 1,311,227 725 336 
ZINC 12,189,492 759 302 
PubChem 52,008,676 428 633 
Merge 65,516,032 361 700 
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Database2 

Number of 
BMS 
scaffolds 

Scaffolds 
UNQ  

Scaffolds 
COMMON 

MBC 444 0 444 
DrugBank 3,153 398 46 
ChEMBL.20 368,739 178 266 
ZINC 2,198,481 185 259 
PubChem 7,257,461 84 360 
Merge 9,827,834 71 373 

1Based on smile code; 2Based on BMS scaffolds, BMS: 
Bemis Murcko Scaffold; UNQ: unique nº of compounds or 
scaffolds in MBC library in comparison with other 
databases; COMMON: nº of compounds or scaffolds 
present or shared by MBC library and other databases. 

 

 

CONCLUSION 
Our aim is to shorten the drug discovery process by producing high-quality 

drug-like compounds that generate valuable data from screening programs. The 

collection of small molecules characterized here, referred to as the MBC library, is a 

unique collection of small molecules that have enriched drug-like properties. These 

molecules have been designed entirely by the medicinal chemists in our group. The 

MBC library contains over 1,000 handcrafted chemical compounds. The analysis 

reported here, based on computational studies using QuikPro and MQN-Mapplet 

software, showed that this collection of compounds is of high quality in terms of 

diversity and drug-like properties, and they are suitable for producing high-quality 

starting points and for enabling quick starts to drug discovery programs. 
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