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ABSTRACT: Pan-Assay Interference Compounds (PAINS)
are very familiar to medicinal chemists who have spent time
fruitlessly trying to optimize these nonprogressible com-
pounds. Electronic filters formulated to recognize PAINS can
process hundreds and thousands of compounds in seconds and
are in widespread current use to identify PAINS in order to
exclude them from further analysis. However, this practice is
fraught with danger because such black box treatment is
simplistic. Here, we outline for the first time all necessary
considerations for the appropriate use of PAINS filters.

In 2003, one of us (J.B.) established a general purpose high
throughput screening (HTS) library, numbering some

100 000 compounds selected from around four different and
well-known vendors. Our guiding philosophy was to include
reasonably lead-like and optimizable compounds (MW 150−
400; rings 1−4; HBA < 8 and HBD < 5). We also excluded very
large numbers of compounds that were deemed to be too
similar (>85%) to others already selected and undertook
extensive curation to exclude unwanted functional groups prior
to purchase. The point to be made here is that the compounds
in our library would have been similar to those in other
academic screening collections.
Random inspection of several hundred structures corre-

sponding to compounds selected for purchase raised relatively
few alarms and the HTS library was duly established. We ran
assays in the presence of detergent (0.01−0.05% Tween-20) to
avoid aggregate interference, and so excitement was consid-
erable when we started identifying numerous potent and
selective hits for our various targets. However, much time in the
ensuing first few years was wasted on hits that turned out to be
translational cul-de-sacs. In the most straightforward cases,
biological activity was not reproduced in resynthesized or
repurified samples. In other cases, early and promising
structure−activity relationships (SARs) dissipated, ending in
flat or otherwise uninterpretable SARs. We observed that
similar looking but not necessarily the same compounds kept
appearing in different screens, and so we developed the notion
of classes of intrinsically promiscuous compounds sharing
common substructural motifs. Identification of the offending
substructures was not straightforward, but we eventually settled
on definitions with which we were satisfied.

On searching the literature, we were struck by the
observation that many of these problematic chemotypes were
known to exhibit varying forms of chemical reactivity and
apparent biological activity. We surmised that such behavior
could result in positive readouts in biochemical assays via a
variety of mechanisms but that such readouts were not
associated with compounds that could be regarded as
optimizable and progressible. It was for this reason that we
coined the term Pan-Assay Interference Compounds but it is
important to realize that this nomenclature is class-based and
individual compounds recognized by a PAINS substructure do
not necessarily exhibit broad spectrum interference.
In 2010, our investigation was published in the Journal of

Medicinal Chemistry.1 Some 7 years later, with 1035 citations
(Google Scholar, October 18, 2017), the response to this
publication has been larger than we had anticipated. It is the
recognition of these nuisance compound classes rather than just
specific compounds by medicinal chemists worldwide that has
in our view largely driven the attention that the PAINS issue
has garnered.
The implementation of PAINS substructures as electronic

filters allows for near immediate identification of PAINS even
given the input of many thousands of compound structures.2,3

However, with such ease of use comes the danger that the
appropriate degree of intellectual rigor and scrutiny of the
screening context is not applied to this important process of
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compound triage. In recent years, we have discussed many
aspects of PAINS characteristics that should be brought into
consideration during any triage process,1,4−15 but it has become
increasingly clear that overzealous or simplistic use of these
filters may inappropriately exclude a useful compound from
consideration and inappropriately tag a useless compound as
worthy of development.
Since in no single place have these important considerations

related to PAINS assessment been summarized, we feel it is
timely to do so, and that is the purpose of this Review.
It is useful to start with a few observations around the

evolution of the PAINS concept over the past seven years, and
to separate this from discussion around the identification of
PAINS specifically by the electronic filters as originally
published.
PAINS comprise classes of compounds defined by a common

substructural motif that encodes for an increased chance of any
member registering as a hit in any given assay, that may be
independent of platform technology. Such compounds are
concomitantly less likely to be optimizable toward a useful
compound.
A common reason why PAINS register as hits in assays is

that the substructure can confer an ability to interfere in
biochemical assays. Mechanisms are various and include, for
example, reactivity with biological and bioassay nucleophiles
such as thiols and amines; photoreactivity with any protein
functionality; metal chelation that can interfere with proteins,
assay reagents, or through bringing in heavy metal contami-
nants; redox cycling and redox activity; physicochemical
interference such as micelle formation, or; having photo-
chromic properties that might interfere with typically used assay
signaling such as absorption and fluorescence.
A small proportion (ca. 5%) of FDA-approved drugs contain

PAINS-recognized substructures, these comprising both natural
products and synthetic drugs. Regardless, this observation has
no relevance to low micromolar screening hits even if they
belong to the same PAINS class as that of an FDA-approved
drug, and cannot be used to suggest that such a screening hit is
necessarily progressible. This is because the relatively few
known PAINS-containing drugs were discovered in a traditional
manner after observation of potent downstream efficacy, not
through target-based screening. We have discussed this in detail
elsewhere.6,10,15

The derivation of the electronic PAINS filters has been
purely observational, and they have in no way been derived
actively from known toxicophores or groups conveying
unattractive physicochemical or pharmacokinetic properties.
Although these phenomena do appear to be quite commonly
associated,1,10 it would be completely wrong to assume for

example that a PAIN must have poor pharmacokinetic
properties or that a toxicophore must also be a PAIN.
Nor are these filters comprehensivea compound not

recognized as a PAIN may still be a PAIN in its behavior. The
reason for this limitation is that PAINS were defined based on a
curated screening library. Though it reasonably represents
other screening libraries of vendor-derived compounds, it was
subjected to prefiltering to exclude a large number of functional
groups defined as problematic screening hits in several
publications emanating from the pharmaceutical industry at
the time. An electron-deficient and reactive epoxide (1),
aziridine (2), or nitroalkene (3), for example, will not be
recognized by the electronic filters because all epoxides,
aziridines, and nitro groups were excluded from our general
purpose screening library from which PAINS chemotypes were
derived (Figure 1).
A compound with a PAINS chemotype recognized by the

electronic filters and that exhibits PAINS behavior may be
partnered with an analogue that is not recognized by the filters
if that analogue represents a variant that, however slight or
peripheral, was absent in any analogue present in the original
general purpose 100 000 HTS library, which is effectively a
“training set.” This is exemplified by 4 and 5 in Figure 1.
Apart from the structural bias in the underlying data set, we

must further consider the relatively small and specific set of
data on which PAINS were defined. This comprised
approximately 100 000 compounds and six HTS campaigns
against protein−protein interactions using a single assay
technology (AlphaScreen). We parenthetically comment that
we have found AlphaScreen to be a highly robust yet sensitive
assay technology returning hit rates as well as any other
technology16 if properly optimized. Wider analysis of additional
data sets has since led to recognition of newer classes of
protein-reactive PAINS, such as β-aminoketones 6, isothiazo-
lones 7, and toxoflavins 8 in Figure 1, which had not been so
prominent in the earlier screens, and consequently these do not
feature in the original set of filters.6,15

A change of technology platform or even changes within the
same technology platform can introduce numerous ways of
interference in signaling that may not have been apparent in the
original AlphaScreen data set. An example is the specific and
unexpected interference of salicylates in FRET technology17 or
acetamides in assays using what turned out to be insufficiently
selective antiacetyllysine antibodies, for example.13 Such
compounds will not of course be recognized by the electronic
PAINS filters.
Assay conditions will play a role as well. The assays used to

define PAINS were run under detergent-containing conditions
designed to minimize interference by aggregates, a phenomen-
on identified by Shoichet and coworkers.18 So although

Figure 1. Epoxide 1, aziridine 2, and nitroalkene 3 unrecognized by PAINS electronic filters because such compounds were not included in the
inaugural WEHI HTS library. The dicyanoalkene 4, however, is a recognized PAINS chemotype, but the corresponding electronic filter
ene_cyano_A would not recognize consequently plausible PAIN 5 simply because 5 was a substructure not represented by any compound in the
initial HTS library from which PAINS were defined. Other reactive compounds such as β-aminoketone 6, isothiazolones 7, and toxoflavins like 8 are
not recognized by PAINS filters because their PAINS behavior was only subsequently identified after filter definition.
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aggregation could be regarded as PAINS-type behavior, the
PAINS electronic filters will not necessarily recognize
aggregate-forming compounds. Additionally, the test concen-
tration employed in the early screens from which PAINS were
derived was relatively high and generally 50 μM. This will likely
have emphasized bad behavior that is unlikely to translate
proportionally to settings with a significantly lower test
concentration. This would also obviously require redefinition
of what constitutes a frequent hitting class in any PAINS class
performance analyses of HTS data derived at lower test
concentrations. Unfortunately, such fundamental principles are
sometimes not taken into account in studies of PAINS filter
performance.21

There does not seem to be an industry-accepted
nomenclature or ontology of anomalous binding behavior.
Offending compounds have been termed frequent hitters and
have been variously subdivided into false positives and
promiscuous binders,19 or specific and nonspecific groupings.16

In Figure 2, we suggest pictorially how the terms most
commonly associated with such discussions, whether these be
micelle formers, false positives, false hits, bad actors, frequent
hitters, true positives, or true hits, can be appropriately applied
at different stages of hit triage, and we have annotated the
image with approaches commonly used to characterize such
hits.
In brief, we suggest it is useful to first segregate actives arising

from a screen into target modulators and readout modulators,
and that the term “true positives” be assigned to the former and
“false positives” to the latter. For a variety of subversive reasons,
target modulators may not always be progressible, and so we
suggest the term “false hit” is usefully applied to such target
modulators, to differentiate these from the remainder, these
therefore being termed “true hits.” The term “bad actor” would
fit nicely into the category of “false hit” in this regime. On the
other hand, a “frequent hitter” can simply be any individual

compound or chemotype associated with a body of screening
data that suggests higher than expected active readoutin
other words, the blue box in Figure 2in a statistically
significant manner. A “frequent hitter” can be a true hit, false
hit, or false positive depending on the context of the specific
assay in which it is tested.
With an initial intention for maximal capture of subversive

compounds, we did not run assay technology-specific counter-
screens to exclude compounds from analysis. For all these
reasons, a limitation of the electronic filters is that some aspects
may be specific toward the conditions outlined above. Most
obviously, some compounds will simply interfere in
AlphaScreen signaling such as dialkylaniline 9 in Figure 3

that probably quenches singlet oxygen. Others, such as
sulforhodamine, trypan blue, malachite green, and Chicago
Skye Blue, absorb light at wavelengths in the 576−618 nm
range that we have shown to represent signaling interference.
However, while many PAINS classes contain some member
compounds that registered as hits in all the assays analyzed and
that therefore could be AlphaScreen-specific signal interference
compounds, most compounds in such classes signal in only a
portion of assays. For these, chemical reactivity that is only
induced in some assays is a plausible mechanism for platform-
independent assay interference.1,20 Hence in the language used
around Figure 2, PAINS can be considered to represent
frequent hitter chemotypes derived from a particular data set

Figure 2. Simplified ontology of hits and false-positives. Red boxes indicate potential approaches to identify different types of hits in a cascade of
assays. The type and order of assays used in the cascade needs to be considered based on the expected hit rates and achievable throughputs of the
relevant assays. The term “frequent hitter” in a sense lies outside this system as it presumes a body of associated historical screening data.

Figure 3. Interference by alkylanilines such as 9 with AlphaScreen
signaling, probably through reaction with singlet oxygen, routinely
returning an apparent IC50 value of around 3 μM.
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but with broader relevance to the screening community, and
they can be true or false hits, or false positives depending on the
context of the assay in which they are tested.
Just as PAINS classes may contain compounds that

registered as hits in all assays studied, and compounds that
registered as hits in a portion of assays studied, so do they
contain large numbers of compounds that were entirely clean.
That is, a distribution of activity is observed for every class of
PAIN. Independent analysis by one of the authors (J.W.M.N)
has confirmed that incidence of PAIN behavior in classes of
compounds sharing a substructural motif is generally elevated,
but not observed throughout.16 It should therefore be
emphasized that the presence of a PAINS substructure does
not convey PAINS behavior in all instances, but merely reflects
a risk of PAINS behavior, the risk increasing as that class is
shown to be relatively more promiscuous. Apparently clean
members of PAINS chemotypes may simply have needed more
assays to reveal their problematic behavior, or conversely they
might be genuinely benign. In light of the reflections above, the
observation21,22 that more extensively studied compounds may
be consistently inactive even with a PAINS-recognized core is
not surprising. In this context, recently identified alterations
that confer benign behavior to an otherwise promiscuous
PAINS core are of particular interest.22 Physicochemical
properties such as hydrophilicity are not captured by simple
substructures yet may contribute to amelioration of assay
interference.16 Further work along these lines is to be
encouraged because until we understand these rules, elabo-
ration of a PAIN that may be a clean compound or one that is
thought to simply represent signal interference is a risky
venture if it cannot be predicted when PAINS behavior will
arise for any given analogue.
An aspect of PAINS that is much harder to predict is the

influence of commonly associated contaminants or decom-
position products. In such cases, activity of a hit may vanish on
purification. Purity checks as well as orthogonal resynthesis of
hits should therefore be considered as part of a hit validation
cascade. We have little understanding of the effect of such
contaminants on the derivation of the original set of electronic
filters, but it may have led to highlighting of classes for reasons
that could be considered spurious for properly treated samples
where this is not a problem. Contamination by heavy metals, in
particular, is a significant issue in this context.23

The set of data originally used has been relatively small and
has limited statistical significance of the results, and this was
recognized by classifying the filters into three families. While
PAINS substructures represented in the filters number some
480, a large number (58%) of compounds are encoded by just
16 substructures that represent highly exemplified chemistry
(“Family_Filter_A”, each substructure with 150 or more
analogues), and the significant remainder (27%) in just another
55 substructures (“Family_Filter_B”, each of the 55 sub-
structures encoding for 15−149 analogues). The vast majority
of filters (409, or 85%) is contained in Family_Filter_C, each
with 1−14 analogues, only representing 15% of PAINS-
recognized compounds and being very poorly populated.
Therefore, discussion and analyses of the veracity of PAINS
filters and the concept should focus on Family Filter A, to a
varying extent Family Filter B, but arguably not Family Filter C,
until such a time as the latter family of substructures is better
understood. It cannot be said that a compound recognized by
Family Filter C is necessarily a PAIN until more is understood
about this set of filters.

Technology has thrown a spanner in the works as well when
it comes to PAINS recognition. Users of PAINS filters
translated from the original language (SLN) into more
common languages such as SMARTS are cautioned that the
two sets of filters (SMARTS compared with SLN) might return
different results. This is exemplified in 10 and 11 in Figure 4,

inappropriately identified as belonging to hzone_phenol_B and
dyes5a PAINS classes, respectively (Duncan Beniston, Chem-
Bridge Corporation, personal communication). We would
recommend use of the FAF-Drugs3 implementation, but
discrepancies may still arise.2

Finally, the distinction needs to be made between a PAINS
chemotype and a privileged scaffold, as both may present data
suggestive of promiscuity. For example, the 2-aminopyrimidine-
based scaffold is a well-known kinase inhibition motif, and its
screening data may reflect a bias toward being screened in
kinase assays, for example, as a result of subset screening. The
data can therefore be suggestive of promiscuous and non-
progressible behavior solely due to the higher incidence of
activity from such targeted campaigns.16 Comparison across
different target classes and different assay technologies would
distinguish between the two cases. Other scaffolds are more
generally privileged across different target classes.19 For these
cases, analogue-specific target selectivity and potency would be
a distinguishing feature from PAINS behavior, which is core-
driven and generally most prevalent at micromolar concen-
trations.

■ PAINS ARE RECOGNIZED BY OTHER,
INDEPENDENTLY DEVELOPED PROMISCUITY
FILTERS

PAINS that are recognized as interference compounds by other
methods have been commented on extensively.1 Examples of
alternative means of detection and annotation comprise the
ALARM NMR assay, reported in 2005 by Abbott Laborato-
ries,24 as well as promiscuity filters published by Bristol-Myer
Squibb25 and Hofmann La-Roche.26 We felt this was an
important observation because PAINS were defined by us
based on a combination of medicinal chemistry recognition,
first-hand experience, primary HTS data, and recognition of
poorly performing compound classes in the literature.
The corroboration of PAINS classes by such independent

efforts provides strong support for the structural filters and
subsequent recognition and awareness of poorly performing
compound classes in the literature. It is instructive therefore to
introduce two more recent and fully statistically validated
frequent-hitter analytical methods that are assay platform-
independent. The first was reported in 2014 by AstraZeneca16

Figure 4. SMARTS implementations of the original SLN PAINS filter
may inappropriately identify non-PAINS, shown here for 10 and 11
inappropriately identified as belonging to hzone_phenol_B and dyes5a
PAINS classes, respectively.
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and the second in 2016 by academic researchers and called
Badapple.27

A compound can be defined as a frequent hitter agnostic of
substructure and setting if its activity is significantly higher than
expected, and this is the approach that AstraZeneca takes in
interrogation of their own extensive corporate database.16 It is
possible therefore to take a PAINS core and undertake a
substructure search and observe the cumulative promiscuity
behavior of all compounds containing that substructure, which
can be reported as an “incidence.” A random set of compounds

from the collection has an expected incidence of 6.5% of
apparently promiscuous compounds, and the more a
substructure class deviates upward relative to this value, the
more promiscuous it can be said to be. On the other hand,
Badapple requires input of a compound of interest and then
undertakes a hierarchical scaffold analysis and reports on the
promiscuity score (pScore) of the different predefined scaffolds
recognized in the compound of interest, where a pScore of 0−
100 suggests no indication, 100−300 is a moderate score

Table 1. Some of the Most Common PAINS Generally Recognized by Other Measures of Promiscuitya

aThese are in order according to the original Family_Filter_A. PAINS are characterized by an enrichment factor, defined as the number of analogues
of a given class that registered as active in between 2 and 6 of the 6 HTS campaigns analyzed, expressed as a percentage of the number of analogues
of that class that did not register as active in any of the 6 HTS campaigns. The AstraZeneca approach (AZ incidence) interrogates the AZ corporate
database and reports the incidence of bioactivity of any compound relative to that expected from a random selection (6.5%). We have arbitrarily
selected <10%, <15%, and ≥15% as the criteria for color coding green (benign), orange (raised), red (promiscuous). Badapple requires input of a
compound of interest and then undertakes a hierarchical scaffold analysis and reports on the promiscuity score (pScore) of the different scaffolds that
make up the compound of interest, where a pScore of 0−100 suggests no indication (green), 100−300 is a moderate score suggesting weak
indication of promiscuity (orange), and >300 is a high pScore with a strong suggestion of promiscuity (red). Because Badapple is scaffold-centric,
some substructures where substituents are part of the definition cannot be sensibly analyzed (no pScore shown) or are incompletely analyzed
(pScore*).
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suggesting weak indication of promiscuity, and >300 is a high
pScore with a strong suggestion of promiscuity.
In Tables 1 and 2, we have taken the 16 most highly

populated PAINS substructuresthose that represent at least
150 analogues in the original HTS libraryas reported in the
original publication that comprise the family A set of filters and
analyzed them using the AstraZeneca database as recently
described16 but updated to take into account minor improve-
ments in accuracy for SLN to SMARTS conversion. Where a
relevant scaffold is also encoded for in Badapple, we have
included a pScore as well. In Table 1 are listed the 13 PAINS
substructures that are convincingly problematic when assessed
by these other, independent approaches, while in Table 2 are
listed the three PAINS substructures where this is not the case.
Immediately obvious are the most problematic and readily

identified PAINS such as alkylidene barbiturates (a),
rhodanines (j), and related heterocycles (l), as well as quinones
(d). A previous discussion explains1 the reasons why quinones
and alkylidene Michael acceptors are PAINS. Some other less
discussed classes merit some further comment based on the
results shown in these tables.
Hydroxyphenylhydrazones (b and k) also exhibit PAINS-like

behavior1 but are observed by AstraZeneca to be moderately
promiscuous, as are phenolic Mannich bases (g). This may be a
reflection of structural bias toward “better” compounds in the
collection. Badapple recognizes the broader N′-phenyl−phenyl-
hydrazone scaffold as strongly promiscuous, with a pScore of
590, but cannot provide a finer detailed breakdown for more
accurate comparison because it only identifies scaffolds and
does not consider substituent effects. This is a limitation in this
method.
We have found azo containing compounds (e) to be frequent

hitters and have wondered whether singlet oxygen conferred an
AlphaScreen-specific interference component.1 However, As-
traZeneca analysis also concurs that the azo group is
promiscuous, with an incidence of 16%. Badapple requires
elaboration to an azobenzene scaffold before recognition is
possible but does identify this moiety as highly promiscuous
with a pScore of 367. Azo groups are commonly colored and
their photoreactivity exploited in their use as photochemical
switches, but these attributes do not necessarily wholly account
for this apparent promiscuity. We have previously discussed the
drug Eltrombopag’s origins as an azo-containing screening hit,8

and clarification of the nature of azo group PAINS
mechanism(s) would be a useful future endeavor.
It is observed that an aniline-based PAINS substructure like b

in Table 2 is assessed by AstraZeneca to be entirely benign.
This observation is in keeping with our previous discussion1

that such compounds could selectively interfere with

AlphaScreen signaling through reaction with singlet oxygen. It
is therefore particularly interesting that the aniline-based
PAINS substructure shown as c and h and to a lesser extent i
and m in Table 1 are determined by AstraZeneca analysis to be
frequent hitters. In their excellent analysis of Eli Lilly HTS data
that discussed issues ranging from contaminant activity to
apparent promiscuity in privileged scaffolds, Bruns and Watson
also confirmed that aniline-based structure h was highly
enriched in sets of screening hits.28 This suggests that among
the aniline-based PAINS, while some may be AlphaScreen
interference compounds, others are more generally promiscu-
ous, the nature of which remains to be determined. Badapple
cannot be used for analysis of any of the aniline-based queries
because of the substituent-inclusive nature of the substructure
definitions. A key observation remains that even in sets of very
promiscuous substructures, significant numbers of specific
compounds are contained therein that do not themselves give
rise to an anomalous hit rate in HTS screens.
It is for all the above reasons that in our Table of Contents

graphic, we have deliberately selected structures to most
strongly exemplify our message. However, it is important to
note that this is not a quantitative representation of the
performance of PAINS filters, the veracity of which, at least for
the major FAMILY_FILTER_A, is underscored by the data
presented in Table 1.
Finally, for the reasons discussed earlier, a word of caution

needs to be reiterated when comparing the results of SMARTS
promiscuity filters applied to screening data derived from a
compound library such as AstraZeneca’s that may differ in
unknown ways to the compound library from which those
promiscuity filters originated, such as the WEHI library and
associated screening data that gave rise to the SLN PAINS
filters.

■ FUTURE DIRECTIONS

Experienced medicinal chemists will generally agree that a
screening hit should not be assumed to be useful unless
supported by strong structure−activity relationships accom-
panied by hit-to-lead optimization. Too many high profile
publications continue to focus on excessive downstream
interrogation of unoptimized hits unsupported by SAR.
Experienced medicinal chemists recognize that screening hits
readily give readouts in biochemical and cell-based assays and
that this does not mean such compounds are progressible or
that cell-based activity can be assumed to be linked to the
biochemical activity. A compound that belongs to a class with a
history of promiscuity enabled via various mechanisms is a high
risk option to select for optimization.

Table 2. Substructures Defined in PAINS Filters Not Generally Recognized As Promiscuous by Other Measuresa

aRefer to Table 1.
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It is perhaps because this issue is so readily understood by
medicinal chemists that approximately 2 years ago the Journal of
Medicinal Chemistry implemented requirements of authors to
provide more than the usual amount of data for manuscripts
containing compounds recognized by SMARTS-based PAINS
filters. The filters are advantageous for researchers less
experienced in medicinal chemistry as it diminishes the need
for structure recognition experience. Earlier this year, we
witnessed a significant and welcomed expansion in ACS
editorial policy, published simultaneously in nine ACS journals,
calling on researchers to be more aware of the problem of
PAINS as well as aggregators.29

In this Review, we emphasize the point that PAINS filters can
be used to identify compounds that have a higher likelihood
than others of being anomalous screening actives, but that the
extent to which one views a compound as nonprogressible is
very much dependent on the PAINS substructure it belongs to,
and an understanding of how that chemotype may be
promiscuous, if indeed there is any understanding at play. It
is clear that some PAINS chemotypes are far more
promiscuous−and hence suspectthan others.
If accompanied by appropriate evidence and wording,

publication of PAINS may be appropriate and summary
rejection of such efforts entirely inappropriate. A recent and
extreme example of how even a quinone-based screening hit,
which may be regarded as among the most troublesome of all
PAINS chemotypes, can be a viable starting point for
optimization, is a case in point. Here, researchers took a
quinoid HTS hit (12) against poly(ADP-ribose) glycohydrolase
and transformed it into a potent, selective, nonquinoid,
advanced compound (13, Figure 5).30 Circumstances were

unusual: it was the only hit from screening 1 400 000
compounds and therefore allowed for more focused attention,
which revealed plausible on-target cell-based activity. Whether
screening data suggested it was a benign subclass of this type of
PAIN was not reported, but it is noteworthy that 86 out of 370
quinones in our own original study were clean. SPR and
structural biology demonstrated credible and stoichiometric
binding, leading to in silico scaffold hopping and clear early
SAR. Above all, there was acute awareness that this core was a
PAIN, and this was factored in for all early data interpretation,
leading to clarity in compound progression criteria (A. Jordan,
University of Manchester, personal communication). Publica-
tion of the early work, if based just around the quinoid-type
screening hit, would not have been acceptable given the
troublesome history of this compound class, but becomes so
after such demonstration of SAR and optimization with
successful scaffold hopping. It remains to be determined
whether this team has inadvertently discovered a quinoid
subtype with specific structural features that render it inert. The
key is to remain evidence-based, and in our experience some
medicinal chemists are inappropriately regarding non-PAINS as
PAINS on the basis of molecular similarity alone.

Another comment we frequently encounter and very relevant
to this journal is that PAINS may not be appropriate for drug
development but may still comprise useful tool compounds.
This is not so, as tool compounds need to be much more
pharmacologically precise in order that the biological responses
they invoke can be unambiguously interpreted.4

Given our discussion documented herein, the development
of an optimized set of PAINS filters in the universally used
SMARTS format and derived from a universally accessible set
of data, such as PubChem,31 and with input from corporate
sources, is clearly an attractive proposition, and we will report
on our efforts here in due course. Further, the moderated ACS
editorial stance most recently adopted for PAINS and related
compounds would seem to be entirely appropriate.29 Indeed,
one might suggest that journal judgment be best focused on the
more universally recognized PAINS cores than simply all those
encoded for by the electronic filters.
In summary, we have previously discussed a variety of issues

key to interpretation of PAINS filter outputs, ranging from
HTS library design and screening concentration, relevance of
PAINS-bearing FDA-approved drugs, issues in SMARTS to
SLN conversion, the reality of nonfrequent hitter PAINS, as
well as PAINS and non-PAINS that are respectively not
recognized or recognized in the PAINS filters as originally
published. However, nowhere has a discussion around these
key principles been summarized in one article, and that is the
point of the current article. Had this been the case, we believe
some recent contributions to the literature would have been
more thoughtfully directed.21,32

Affirmation of PAINS promiscuity using independent
methods developed by AstraZeneca or as scripted within
BadApple is compelling verification of PAINS filter utility, but
the structure-based positive identification of a PAIN can never
be regarded as a black-and-white issue. Authors whose
chemotypes are questioned by colleagues, reviewers, or editors
should be conversant with the nuances discussed in this article.
This knowledge will allow for formulation of appropriate and
convincing counterarguments in support of their work, or
prevent investigators being led astray.
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