
A Benchmark Set of Bioactive Molecules for Diversity Analysis of
Compound Libraries and Combinatorial Chemical Spaces
Published as part of Journal of Chemical Information and Modeling special issue “Chemical Compound Space
Exploration by Multiscale High-Throughput Screening and Machine Learning”.

Alexander Neumann* and Raphael Klein

Cite This: J. Chem. Inf. Model. 2025, 65, 9097−9124 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Sources for commercially available compounds have
been experiencing continuous growth for several years, reaching
their peak in billion- to trillion-sized combinatorial Chemical
Spaces. To assess the quality of a compound collection to provide
relevant chemistry, a benchmark set of pharmaceutically relevant
structures is required that enables an unbiased comparison. For
this purpose, the ChEMBL database was mined for molecules
displaying biological activity, and three benchmark sets of
successive orders of magnitude were created by systematic filtering
and processing: Set L (“large-sized,” 379k), Set M (“medium-
sized,” 25k), and Set S (“small-sized,” 3k). Tailored for broad
coverage of the physicochemical and topological landscape, the
benchmark Set S was then employed to analyze the chemical diversity capacities of commercial combinatorial Chemical Spaces and
enumerated compound libraries. Among the three utilized search methods�FTrees (pharmacophore features), SpaceLight
(molecular fingerprints), and SpaceMACS (maximum common substructure)�eXplore and REAL Space consistently performed
best. In general, each Chemical Space was able to provide a larger number of compounds more similar to the respective query
molecule than the enumerated libraries, while also individually offering unique scaffolds for each method.

■ INTRODUCTION
The accessibility to small molecules of interest has been
significantly expanded in recent years through the continuous
growth of commercial compound libraries.1−3 Where promising
compounds and analogs previously had to be synthesized in-
house, it has become common practice to screen vendor catalogs
for structurally related substances that can be purchased in small
quantities for biological testing. This allows for accelerated
insights into structure−activity relationships (SARs) and
ultimately a speedup of the whole lead optimization process.
Beyond the obvious aspects of convenience and flexibility in
choosing from one of the many vendors, this approach also
enables savings in personnel, material, and operational costs.
Vendors, for economic reasons, have largely optimized their
processes to offer screening compounds at competitive prices,
making it economically unfeasible for in-house synthesis to
compete. For example, compounds from Enamine’s REAL
Space are officially listed in the price range of 163−245 USD per
1 mg, which can hardly be competed against with the costs of an
experienced chemist, required materials, purification, and
storage in the Western world.4

However, it cannot be denied that the continuous growth of
compound libraries brings well-known challenges in processing

larger data sets.3,5−7 This becomes particularly evident in the
context of combinatorial compound collections, the so-called
Chemical Spaces (written with capital letters in this study to
distinguish them from the concept of chemical space).
Nowadays, Chemical Spaces encompass billions to trillions of
commercially accessible compounds of which only the smallest
fraction has already been listed somewhere, displaying vast
potential for novel intellectual property.8−10 After all, setting up
a combinatorial Chemical Space focusing on just six functional
groups can already result in a substantial size of 2 × 108.11

Understandably, these numbers are not physically kept in
stock on shelves but are synthesized and delivered upon request
for the customer. Alternatively, the option is also available to
order the corresponding building blocks and synthesize the
desired product oneself. In this case, the Chemical Spaces serve
as a hunting ground for all possible synthesis options resulting
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from the utilized building blocks. Unlike conventional
enumerated molecule libraries, where each compound entry is
explicitly listed, Chemical Spaces consist of building blocks and
encoded chemical reactions, which can be searched for relevant
chemistry using algorithms specifically designed to operate in
their combinatorial architecture.12−14 Similarity searches with
these algorithms enumerate the desired number of top-ranking
results in common standard formats (SMILES, SDF). The
associated sheer size of a compound inside the Chemical Spaces
therefore makes it more difficult to conveniently assess the data.
While several efforts in studying combinatorial Chemical

Spaces have already been conducted,15−22 a holistic under-
standing of their capacities and blind spots has yet to be
achieved. Although investigations of vendor libraries have
already been conducted, no focus was placed on the applicable,
direct relevance of the results in the context of modern drug
discovery.23−25 This leads to gaps in understanding their utility
and relevance for modern drug discovery challenges from
academic and industry perspectives.26

Against this background, the same questions arise as with
smaller substance libraries: Despite the growing number of
entries, what are the blind spots of commercial libraries
regarding small molecule drug discovery? How can the diversity
of a compound collection be assessed, and consequently, how
should a data set be designed to address these questions?
With the advent of machine learning (ML) and artificial

intelligence (AI) methods, the principle of “the more, the
merrier” toward data set sizes has been embraced to provide
models with sufficient data points to improve the quality of
results.27−30What the resulting benchmark sets have in common
are several million data points. While highly relevant for training
models, these numbers lead to long computational times during
sequential processing in descriptor-driven approaches (e.g.,
molecular fingerprint screens, substructure searching, and
ensemble docking). It would therefore be advantageous to
have a representative set of bioactive molecules that is several
orders of magnitude smaller than the published benchmark sets
and suitable for routine applications. This data set should
possess the following characteristics: (i) a size that allows the

Figure 1. Systematic processing and filtering of the ChEMBL data with subsequent processing steps to achieve three benchmark sets: “large-sized” Set
L, “medium-sized” Set M, and “small-sized” Set S.
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completion of multiple chemical informatics tasks within a
manageable time frame and can be processed even with standard
hardware in most setups, (ii) contain molecules with high
relevance for drug discovery, and (iii) a meaningful and broad
coverage of chemical space.
Resorting to FDA-approved drugs to assess and compare

compound collections for their diversity and chemical space
coverage can introduce certain biases. After all, the FDA-
approved drug list represents the crem̀e de la crem̀e of
therapeutics�the result of years of campaigns, countless
optimization iterations, and extensive human trials. This
inevitably leads to certain target classes being overrepresented,
which can impact the frequency of specific molecular motifs
within the set. On the other hand, possible underexplored
intervention points, or those whose first-in-class candidates are
still in clinical phases, are not covered by the list, potentially
limiting the exploration of appropriate chemical diversity for
drug discovery. Another drawback of FDA-approved drugs is
their prior optimization history: it is quite common for five or
more synthesis steps to be required to obtain the desired
product.31 While this may be a necessity due to the lack of
commercially available building blocks, on an industrial scale, it
can also be driven by the need to avoid unwanted byproducts.
Ultimately, there is no way around it when a specific compound
with the desired decorations is needed because it possesses the
best physicochemical and pharmacological and safest toxico-
logical properties.
Nevertheless, this highlights an incompatibility with the

approach of conveniently obtaining desired compounds in one
or two steps with a high success rate�an expectation often set
for initial hit molecules.
Other published data sets or publicly accessible collections

come with different issues, such as blurred or missing activity
data, low relevance for modern drug discovery purposes, or
limitations in their design.32−34 There is no question that using
raw data without some form of scrutiny, filtering, or validation is
neither effective nor useful.
For these reasons, the study presented here focuses on the

creation of multiple benchmark sets of relevant bioactive
molecules that reflect the current coverage of the chemical
landscape. After mining the ChEMBL database for compounds
with reported biological activity, the data were systematically
filtered and processed for relevant entries. Chemical landscape
coverage-focused extraction of representative molecules ulti-
mately enabled a scaling down to three orders of magnitude: sets
of 379k, 25k, and 3k structures.
Subsequently, the smallest set was used to examine

commercial compound sources, namely, combinatorial Chem-
ical Spaces and enumerated vendor libraries, for their chemical
diversity and relevance for hit identification and expansion in the
early stages of drug discovery.

■ RESULTS AND DISCUSSION
Data sets were extracted from ChEMBL, containing data points
for the following commonlymeasured parameters: IC50, GI50,Ki,
EC50, and KD, as they allow for a numerical categorization based
on potency, facilitating the identification of promising hits.
Compounds in the nanomolar range are typically of the highest
interest as good starting points for subsequent lead optimization.
Consequently, the following entry numbers were obtained
(accessed in January 2024): potency 4,473,542, IC50 2,663,617,
GI50 2,618,475, Ki 761,069, EC50 500,081, and KD 179,402,
totaling 11,196,186 entries (including duplicates). The follow-

ing parameters were excluded because they do not provide a
numerical value for straightforward compound categorization:
percent effect, activity, MIC, and inhibition. We took into
account that the resulting data set may display a target-focused
bias in regard to the chemical diversity of compounds, and, for
example, data points for antibacterials or compounds with an
unknown target structure may be excluded.
This raw data set of ChEMBL compounds of over 11 million

data points with reported biological data was the starting point
for setting up the benchmark set. From the perspective that the
data set should cover relevant compounds for small molecule
drug discovery, the following filters were applied (a summary is
presented in Figure 1):
(1) Biological activity: values in the nanomolar range (<1000

nM). As described above, the purpose of the benchmark
set is to represent relevant chemistry for drug discovery,
which also entails favorable biological activity. Although
the definition of an initial hit can vary depending on the
project, and values between 10 and 100 μM are often
tolerated, especially for targets without any known
binders, our focus was on more potent compounds, as
these are considered better starting points.35−37 Artificial
values of 0 nM were excluded.

(2) Molecular weight (MW): In recent years, a shift in trend
has been observed regarding beyond-rule-of-five (bRo5)
compounds.38−42 Therefore, the MW cutoff was set at
800 g/mol to ensure coverage of the growing compound
sizes of bioactive compounds.

(3) Size: Only compounds containing at least 10 heavy atoms
were included. While it is certainly possible that some
potent ultralow-molecular-weight compounds43 may be
excluded as a result, the typical potency of fragments lies
in the micromolar to millimolar range,44 meaning that
they would be excluded by filter (1). Furthermore,
compound vendors often make an explicit distinction
between fragment and compound libraries. By applying a
filter of at least 10 heavy atoms, the benchmark set focused
on drug- and lead-like compounds. This setting also has
the added benefit of removing “trivial” compounds, such
as ChEMBL20936 (benzamidine) with 952 nM potency,
ChEMBL1551365 (ethyl nitrite) with 944 nM, and
ChEMBL1200471 (pyrithione) with 907 nM.

(4) No macrocycles: Macrocyclic structures (compounds
containingmore than nine atoms in a ring) were excluded.
While macrocyclic structures are gaining increasing
popularity, their chemical background is often decoupled
from that of small molecules.45 Compound vendors may
offer dedicated macrocycle-focused libraries, which are
based on different synthetic strategies, such as combina-
torial approach (e.g., DNA-encoded libraries (DELs)), or
cyclization at an advanced stage of the synthesis
route.46−48 Due to these pronounced differences in
physicochemical properties and the differentiation of
libraries practiced by the vendors, a decision was made
here in favor of small molecules. It should be mentioned
that the investigated Chemical Spaces do not contain
macrocycles as building blocks or reactions that encode
them as a product.

(5) No off-target activity: Data for the following targets and
target families were excluded from the benchmark set:
HERG (human Ether-a-̀go-go-Related Gene), Kir (in-
ward-rectifier potassium channel), Kv (voltage-gated
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potassium channels), and cytochrome P450 enzymes.
Although there are numerous data points for biological
activity on these structures available, they are generally
collected during assessments of off-target compound
toxicity.49,50 By eliminating these data points, any
misleading bias regarding toxically active compounds
can be minimized.

(6) Activity: Compounds missing a standard value were
removed.

(7) Data interpretability: Imprecise or semiquantitative
values for standard relations (“≫” and “>”), which do
not allow for a comparison, were excluded.

(8) Data validity: Compounds with the following parameters
for “Data Validity Comment” were removed: “outside
range”, “potential missing data”, “potential transcription
error”, “outside”, and “error”.

(9) Duplicates: Duplicates were removed.

(10) Singular events: In the final step, singletons were
removed. In this study, we defined singletons as
compounds that have fewer than five molecules with the
same Bemis−Murcko scaffold within the raw data set. The
reason for removing the singletons is to eliminate random,
not further investigated hits. Compounds that, for
instance, emerged from high-throughput screening
(HTS) provide limited data, which in turn makes it
difficult to verify them as relevant scaffolds. In contrast,
compounds that are part of a series or exhibit biological
activity against multiple biological targets indicate their
potential as drug candidates and privileged structures.

After filtering, a Set L (“L” denoting “large-sized”) consisting
of 379,169 compounds was obtained. Characteristics of this set
include drug- to lead-like structures with relevant reported
biological activities. Additionally, activity singularities were
removed, resulting in an accumulation of privileged scaffolds. To
enable the most versatile options for various drug discovery

Figure 2.Visualization of the trimming of SetM by outlier removal to achieve Set S. Examples of excluded outliers from the sparsely populated regions
of the PCA of Set M feature fragments, polycyclic aromatic hydrocarbons (PAHs), structures bearing long aliphatic chains, peptides, and charged
molecule classes such as nucleotides and aminoglycosides.
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workflows and scenarios, three different data set sizes were
generated: “large-sized” (on the order of hundreds of thousands,
corresponding to Set L), “medium-sized” (on the order of tens
of thousands, corresponding to Set M), and “small-sized” (on
the order of thousands, corresponding to Set S).
To achieve a manageable five-digit size for the data set,

suitable for utilization in a standard hardware setup, Set L was
further scaled down in the next step. The compound with the
lowest weight from each Bemis−Murcko scaffold cluster was

extracted, and the rest were removed. The goal was to identify
the most undecorated motif to increase the chances of finding
related structures using different methods (e.g., maximum
common substructure (MCS) search). After removal, 25,234
unique compounds remained, resulting in SetM (“M” denoting
medium-sized).
Arguably, the size of SetM is already quite comfortably usable

for many purposes. Nevertheless, in addition to this data set,
which can involve intensive computations depending on its use

Figure 3. Overview of the distribution of compounds in Set S based on biological activity, physicochemical properties, and topological attributes.
Lower numerical values are consistently represented in rose,́ higher numerical values in green, and the middle of the range in blue. Less complex
compounds can be found in the upper left region of the first quadrant, with increasing complexity distributed progressively moving to the other
quadrants.
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case, we decided to reduce the size further by another order of
magnitude to the four-digit range. This smaller size can be
employed in most daily applications without fully consuming
computational resources. For this purpose, chemically diverse
representatives were extracted to ensure coverage of the
investigated chemical space. Another aspect that needed to be
addressed was translating the complexity of the chemical space
into an interpretable 2D landscape, aimed at enabling a
straightforward visual understanding of the results. To achieve
this, a principal component analysis (PCA) was performed using
DataWarrior (version 6.0).51 In this context, we prioritized PCA
over uniform manifold approximation and projection (UMAP)
because PCA focuses on the interpretability of the results and is
also long-term reproducible. Additionally, it allows for the
categorization of new compounds within the generated 2D
landscape, enabling other groups to benefit from this ground-
work. After the compound sources were assessed, however, a
UMAP was also performed for the 2D visualization of the results
(see below). The following eight parameters were selected to
perform a 2D PCA: atomic polarization, clogP, number of H-
bond acceptors, number of H-bond donors, polar surface area
(PSA), shape index, stereocenters, and rotatable bonds. Further
insights on the PCA, as well as the eigenvalues of the parameters,
can be found in the Supporting Information (see Table S1).
Subsequently, outliers in the sparsely populated regions were
removed. The rationale behind this is that compounds in the
outlier zone often exhibit extreme physicochemical properties
such as high logP, MW, a large number of stereocenters, or
violations of the rule of five, which would typically disqualify
them from being considered as drug candidates. Additionally,
they belong to molecular categories (e.g., fragment-like,
peptides, nucleotides) that rely less frequently on the commonly
used medicinal chemistry transformations employed in
commercial libraries.22,52−55 To eliminate the outliers, com-
pounds with principal component (PC) values in the top or
bottom 2.5% of the entire range were removed, leaving a total of
22,862 compounds. Visualization of the outlier trimming and
compound examples is presented in Figure 2. In the next step,
the ranges of PC1 and PC2 were each divided into 10%
segments, creating a 10 × 10 matrix that encompassed all
remaining compounds. From each of the hundred segments, up
to 30 random representatives were selected (if an area contained
fewer than 30 compounds, all were included) and merged into a
new data set. This final data set, Set S (“S” denoting small-sized),
contained 2,917 compounds, which cover the condensed
chemical space of Set M.
For the performed PCA and the resulting Set S (and

consequently for Set M), the following distribution with regard
to physicochemical properties and topological chemistry trends
was observed (see Figure 3): More potent biological activity was
observed in quadrants 2 (Q2) and 4 (Q4), while triple-digit
nanomolar values were more frequently found in quadrants 1
(Q1) and 3 (Q3), which are also reflected in the larger standard
deviation for both (see Table S2 for all statistics). The range of
MW was evenly distributed across all four quadrants, with the
smallest compounds accumulating in Q1. Based on the clogP
parameter, it can be inferred that the lipophilicity of the
molecules increases from Q1 to Q3 and Q4, while more
hydrophilic molecules are concentrated in Q2. With average
values of 4.65 and 4.14 H-bond acceptors and 1.75 and 0.80 H-
bond donors for Q1 and Q3, these quadrants exhibit the lowest
number of heteroatoms besides carbon, indicating a higher
prevalence of aliphatic chains and carbon ring systems. In

contrast, Q2 and Q4 show significantly higher numbers of
interaction atoms with mean H-bond acceptor counts of 8.46
and 7.88 and mean H-bond donor counts of 3.30 and 2.23,
respectively. PSA increases from Q1 to Q2 and Q4 and
decreases from Q1 to Q3. Accordingly, the compounds in Q3
have the smallest PSA, while those in Q2 have the largest. To
assess the molecular complexity of the compounds, the numbers
of stereocenters and rotatable bond parameters were examined.
Q1 exhibits both the smallest standard deviation and the lowest
mean of stereocenters among all quadrants with an average of
0.49. Q3 shows a slightly increased mean of 0.70 stereocenters,
while Q2 and Q4 display significantly higher averages of 1.68
and 1.94, respectively, compared to Q1. The standard deviations
increase from Q2 to Q4, indicating a broader distribution and
greater heterogeneity of the results, which can be attributed to
the presence of natural-like compounds. Particularly in Q2 and
Q4, which have the highest standard deviations of 1.97 and 2.43,
respectively, it can be inferred that these quadrants contain
compounds with a potentially higher synthetic complexity. The
number of rotatable bonds can provide insights into a molecule’s
rigidity, which in turn can influence solubility and cell
permeability. With an average of 3.35, Q1 contains compounds
with the fewest rotatable bonds. The average increases to 4.48 in
Q3 and almost doubles in Q2 to 7.10 and in Q4 to 8.7. Finally,
the shape index of the compounds was analyzed as part of the
topological evaluation. The shape index describes the shortest
distance between any two heavy atoms of a molecule, taking the
total number of heavy atoms into account. For example, linear
undecorated alkanes have shape indexes of 1.0, cyclopentane an
index of 0.6, and adamantane an index of 0.5. Consequently, the
shape index allows for insights into the topology of a molecule:
Higher shape index values indicate linear, flexible compounds
without significant branching (e.g., aliphatic chains, alkyne
groups, and biphenyl groups), while lower values suggest
spherical shapes and more rigid compounds with branching
decorations. Given the narrower range of the shape index, from
0.857 to 0.311, with a mean of 0.539 and a standard deviation of
0.080 for the whole set, only blurred boundaries for the
compound characteristics can be drawn between the quadrants.
For Q1−Q4, the calculated means are 0.60, 0.55, 0.52, and 0.49,
respectively. This suggests that compounds with minimal
branching tend to accumulate in Q1, while highly branched
molecules and those with numerous fused ring systems (e.g.,
glucocorticoids and saturated ring systems composed of carbon
and oxygen atoms) are primarily found in Q4. Peptides and
peptidomimetics were mostly found in Q2 and Q4.
Subsequently, it can generally be stated that, due to the similar

ranges of standard deviations forMW, clogP, number of H-bond
acceptors and donors, PSA, and shape index, Set S exhibits a
uniform distribution of compounds with regard to physico-
chemical properties across the quadrants, which in turn can be
associated with good coverage of chemical diversity.
These findings allow the following assignments of the PCA:

Less complex compounds, with many representatives of the
fragment-like class, are primarily found in Q1. Consequently,
these characteristics of the compounds decrease as they progress
toward other quadrants. Given their size, it is not surprising that
the standard values for potency in Q1 are higher than those in
the other quadrants, which contain significantly larger molecules
with more functionalities. These additional features enable
further interactions with the target structure, potentially
increasing the potency of the compounds. A similar argument
for increased standard values can also be applied in the case of
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Q3. Here, the reduced average number of H-bond acceptors and
donors indicates the absence of potential functionalities. This
assumption is further supported by the higher clogP and lower
PSA compared with Q1, suggesting a greater prevalence of
carbon-based systems. In these cases, lipophilic and π-
interactions would make a significant contribution to the
compound’s affinity. In contrast, entries Q2 and Q4 exhibit
significantly more H-bond donors and acceptors, which due to
their increased interaction potential may contribute to the lower
standard values. This is further supported by the fact that certain
functional groups are more frequently found in these quadrants:
302 out of 338 (89%) compounds with a sulfonamide group,
199 out of 281 (71%) with a carboxylic acid, and 87 out of 121
(72%) with a carbamate functionality are located in Q2 or Q4
(see Figure S1). Due to the filtering step in which only the

smallest scaffold was selected, it becomes apparent that the
compounds in Set S predominantly consist of undecorated
systems, offering opportunities for further functional extensions.
Compounds in Q2 are characterized by the highest hydro-
philicity (by consequence of having the lowest lipophilicity) and
the highest average number of H-bond donors and acceptors,
making the compounds in this quadrant the most similar to
typical lead- and drug-like molecules. Q3 contains the most
lipophilic compounds and the lowest averages for H-bond
donors and acceptors, which can be attributed to a large number
of compounds with fused systems of two or more rings as well as
directly connected rings or rings linked through carbon-based
linkers. Q4 covers mainly the bRo5 compounds. Of the 796
compounds in Set S with MW > 500, 552 (69%) are found in
Q4. This corresponds to 76% of the total 727 compounds in Q4,

Figure 4.Overview of the properties of the compounds in Set Swithin the quadrants of the PCA.Quadrant Q1 is shaded in dark green, Q2 in dark blue,
Q3 in light green, andQ4 in light blue. Three examples of molecules are shown for each quadrant. The boundaries between the quadrants are fluid: the
characteristics of the molecules can be very similar, particularly in the transitions between quadrants.
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which is also reflected in the average MW of 547.94 for this
cluster. The summarized observations are presented in Figure 4.
In the future, these findings can also be used for the

approximate classification of new compounds based on their
calculated parameters and corresponding eigenvalues for the
calculation of PCs within the chemical landscape context.
Additionally, Set S can be further filtered according to the
requirements (e.g., for drug-like compounds/compliant with the
rule of five) while maintaining an appropriate size. For example,
the number of rule-of-five-compliant compounds is 1,894, and
the number of rule-of-three-compliant compounds is 111,
indicating that Set S focuses on more developed compounds.
The target coverage of the generated sets was further

examined. For this, ChEMBL-specific protein classification
was used. It should be noted in this context that the target
associated with the potency of the compounds was used,
meaning that other off-targets or activities against different
macrostructure classes were not included in the assessment.
Based on this, it was observed that the downsizing from one set
size to the next one had no significant impact on the target class
coverage (see Figure 5).

The distribution of all three analyzed data sets reflects the
profile of previously reported molecular drug targets and current
trends.56−58 The most prominent targets�such as kinases,
GPCRs, and ion channels�also represent the largest share of
targets in the generated sets. Deviations from the proportions
seen in FDA-approved drugs (e.g., two-thirds of all approved
drugs target GPCRs58) can be attributed to the fact that the
ChEMBL source set also includes a large number of data points
for targets that have historically not been confirmed as
therapeutically relevant. Successful targets, on the other hand,
are pursued more intensively, leading to several approvals over
time, which are reflected in their higher percentages of the total
share. The absolute target counts can be found in Table S3 of the
Supporting Information.

Assessment of Combinatorial Chemical Spaces. The
generated Set S was subsequently used to analyze commercial
compound libraries and Chemical Spaces. Here, we differentiate
between enumerated molecule libraries, where each compound
entry is explicitly listed, and combinatorial Chemical Spaces. As
previously mentioned, Chemical Spaces contain information
about the building blocks and chemical reaction rules for

Figure 5. Target coverage is based on the ChEMBL protein classifications for the generated sets. The numbers represent the percentage share.
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combining them. They, therefore, do not list every possible
combination of building blocks but instead enable the on-the-fly
generation of molecules according to the employed screening
method and algorithm.
For the assessment of their content, the following commercial

Chemical Space were investigated: AMBrosia by Ambinter (1.1
× 1011 compounds), CHEMriya by OTAVA (1.2 × 1010
compounds), eXplore by eMolecules (5.0 × 1012 compounds),
Freedom Space by Chemspace (5.1 × 109 compounds), GalaXi
byWuXi (1.2× 1010 compounds), and REAL Space by Enamine
(7.0 × 1010 compounds). An overview of the investigated
compound collections is presented in Table 1.
For this study, we employed three different similarity search

methods developed to retrieve relevant chemistry from
Chemical Spaces: FTrees, SpaceLight, and SpaceMACS. FTrees
screens for similar compounds based on fuzzy pharmacophore
matching.12 SpaceLight is a molecular fingerprint-based
algorithm that can mine the closest analogs to a query
compound using either extended-connectivity fingerprints
(ECFPs) or connected subgraph fingerprints (CSFPs).13

SpaceMACS is a substructure-driven algorithm focused on the
longest connected substructure chain of heavy atoms and,
therefore, the maximum common substructure (MCS).14,59 All
three methods aim to retrieve compounds fitting a drug
discovery challenge, and while they were developed for
combinatorial Chemical Spaces, they can also be applied to
enumerated sets, making them suitable in this study for
comparing Chemical Spaces and enumerated commercial
compound libraries.
For all three search algorithms, the default settings were used:

For each query compound of Set S (2,917 molecules), 100
results were requested from the corresponding Chemical Space.
For SpaceLight, we chose the most commonly used molecular

fingerprint variant, ECFP4,60 as well as fCSFP4,13 a fingerprint
developed for screening combinatorial Chemical Spaces, to
compare both methods in parallel. In the case of SpaceMACS,
the MCS search was used. The corresponding software versions
of FTrees, SpaceLight, and SpaceMACS were 6.13, 1.5, and 1.3,
respectively. The results of all searches are summarized in Figure
6.
We also investigated whether the results were tied to the

randomly selected 30 molecules per cluster. To this end, an
additional counterset, Set S′, was generated. For this set, up to 30
different molecules from each cluster were selected, if available.
If the number of alternative molecules in a cluster was exhausted,
the remaining slots up to 30 were filled with molecules already
present in Set S. As a result, the new selection again yielded
2,917 molecules drawn from 100 clusters, forming Set S′. This
set was likewise used as a query in the four search runs. The
subsequent analysis revealed no differences in the means
compared to Set S, and the trends in ranking based on the
standard deviation also remained unchanged (see Table S4 in
the Supporting Information).
An analysis of the FTrees results is summarized in Figure 7. It

should be noted that the FTrees algorithm is agnostic to the
topology of the captured pharmacophore fragments during the
calculation of the features: the decoration pattern (ortho-, meta-,
para-), stereochemistry, and position of heavy atoms within a
ring system are not considered as long as the pharmacophore
profile does not change. This can result in the calculated total
similarity of the molecule being 1.0 even though the molecule is
a constitutional isomer or diastereomer of the query compound,
which in turn requires an additional assessment of the results in
the subsequent step.
Furthermore, we were also interested in how many similar

compounds a Chemical Space can offer for a query from Set S.

Table 1. Overview of Commercial Combinatorial Chemical Spaces and Enumerated Compound Libraries Investigated in This
Studya

results with a similarity of 1.0

SpaceLight

vendor compound set size FTrees ECFP4 fCSFP4 SpaceMACS

Chemical Spaces Ambinter AMBrosia 1.1 × 1011 51 20 24 23
(23) (20) (23)

OTAVA CHEMriya 1.2 × 1010 38 27 28 27
(26) (26) (27)

eMolecules eXplore 5.0 × 1012 255 155 180 174
(173) (155) (175)

Chemspace Freedom Space 5.1 × 109 142 84 87 83
(83) (81) (83)

WuXi GalaXi 1.2 × 1010 47 27 28 27
(25) (27) (27)

Enamine REAL Space 7.0 × 1010 288 184 203 191
(190) (183) (193)

libraries ChemDiv Representative Diversity Libraries 1.5 × 105 4 2 3 2
(2) (2) (2)

Life Chemicals HTS Compound Collection 5.7 × 105 21 15 15 15
(13) (15) (15)

Mcule Mcule Full 5.9 × 106 286 245 247 242
(228) (242) (242)

Molport Drug-Like Compounds Library 1.8 × 106 65 47 51 47
(35) (47) (47)

aThe table includes the number of rank 1 results with a similarity of 1.0 that were retrieved for Set S from the corresponding compound sets. The
number in parentheses represents the amount of identical molecules found in both Set S and the compound set. For the SpaceMACS algorithm,
this number corresponds to the listed Sim = 1 value.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c00719
J. Chem. Inf. Model. 2025, 65, 9097−9124

9105

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00719/suppl_file/ci5c00719_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.5c00719/suppl_file/ci5c00719_si_002.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For this, we analyzed the mean and SD of all 100 results for each
query and their distribution. The mean of all results for a query
compound in this context indicates the average value of the
similarity scores relative to the query compound. Consequently,
a high value (maximum 1.0) signifies that the top 100 ranking
results are very similar to those of the query compound. Lower
values suggest that fewer closely related substances are present
among the top 100 ranking results. The SD in this context
reflects the spread of the results. A low SD indicates that, based
on the FTrees similarity score, many results with similar scores
are present (e.g., numerous constitutional isomers with the same
structural motifs in different arrangements). In contrast, a higher
SD suggests there are gaps within the results in the similarity
score (e.g., many heterogeneous molecular motifs, where the
total similarity score as a whole matches the query compound
best compared to its structural analogs). Thus, the mean
answers, on the one hand, which queries have many similar
compounds and, on the other hand, what the average value of a
search query with Set S within a Chemical Space is. The SD
value can provide insight into how the results for a query
compound are distributed within the chemical landscape.
The highest mean scores for rank 1 were calculated for

eXplore, REAL Space, and Mcule, delivering the most similar
compounds for Set S according to the FTrees score. The lowest
SD was observed for eXplore, indicating that this source
delivered the narrowest range of similarity values for the results
of each query. In turn, this means that the retrieved compounds
from eXplore had the highest degree of relatedness to the query

compound among all investigated sources and therefore offered
the highest quantity of similar structures within each query’s
results.
Figure 7 also features different coloring ranges of the mean

FTrees similarity scores for the retrieved results. To provide a
better understanding of how the similarity is distributed for the
ChEMBL results, three different ranges were colored: 0.95 to 1.0
for very similar compounds, 0.9 to 1.0 for related compounds,
and 0.85 to 1.0 to spot more distantly related structures. This
depiction is aimed at illustrating the distribution and
categorization of compounds for which a broader range of
similar compounds is available. The visual assessment further
highlights the higher prevalence of very similar results for Q1
and Q3, while the degree of relatedness decreases toward Q2
and Q4.
When the distribution of rank 1 results with an FTrees

similarity of 1.0 across the quadrants was examined, higher
content percentages were observed for all Chemical Spaces in
Q1. Accordingly, the coverage of the relatively simpler query
compounds from Set S was proportionally the best for all
Chemical Spaces. Given the premise of applying robust chemical
reactions61 for higher synthesis success rates during the
generation of Chemical Spaces, it seems logical that more
complex compounds, primarily found in Q2−Q4, cannot always
be synthesized with just one- to two-step reactions. Therefore,
Q4, which features an increased proportion of bRo5
compounds, consistently yielded the fewest results, with an
FTrees similarity score of 1.0. The distribution is summarized in

Figure 6. Summary of the results from the searches in the compound collections using Set S as queries. Displayed at the top are the mean values of the
respective scores for all result molecules with rank 1. Displayed at the bottom are the mean values of the top 100 results: the average score of all 100
retrieved results for each query was calculated, and from the total of 2,917 averages, the overall mean per source was derived.
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Figure 7.Overview of the FTrees assessment of the commercial Chemical Spaces. Point coordinates correspond to those of the associated Set S query
compound. The FTrees similarity score of the highest-ranking compound in the corresponding Chemical Spaces is shown on the left. For color coding,
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Table S5 of the Supporting Information. An important aspect
required to contextualize the results of FTrees and the other two
algorithms is the design of the Chemical Spaces. A fundamental
decision for the combinatorial architecture could involve
explicitly applying filters on the building blocks for themolecular
size, rotatable bonds, a maximum number of H-bond donors/
acceptors, or other parameters, to guide the properties of the
results to comply with drug-like filters, thereby excluding larger
molecules from the Chemical Spaces.20 This may lead to better
coverage of Q2 and Q4 in the case of eXplore, which contains
more compounds with MW > 500.22

The SpaceLight ECFP4 search results are presented in Figure
8. Compared to FTrees, it is noticeable that the trend in the
quality of the results continues in such a way that eXplore,
Freedom Space, and REAL Space still provide results with

higher similarity scores, which predominantly remain in Q1 and
Q3. This is also evident in the means of the results, which were
calculated analogously to FTrees (the mean of the average
values of all results for a Set S query).
Interestingly, there were changes in the ranking for the SD of

the ECFP4 fingerprint similarity. The lowest SD was displayed
by GalaXi and CHEMriya, while the highest SD was observed
for REAL Space. A closer inspection of results with high SD from
eXplore, Freedom Space, and REAL Space shows that this
observation may result from the presence of some very good
results with high fingerprint similarity, which are accompanied
by results with significantly decreasing fingerprint similarity in
the lower ranks. Based on the sensitivity of the fingerprint
method, even small structural variations or decorations can lead
to a significant drop in the score, which contributes to the

Figure 7. continued

0.90 was set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values between are color-coded using a gradient. On the right, an
overview of the means for the results of the corresponding query is provided. To better assess the distribution of the mean values, the lower cutoff
(colored pink) was shifted by 0.05 units each time.

Figure 8. Overview of the ECFP4 SpaceLight assessment of commercial Chemical Spaces. Point coordinates correspond to those of the associated
SetS query compound. The molecular fingerprint similarity of the highest-ranking compound in the corresponding Chemical Spaces is shown on the
left. For color coding, 0.40 was set as the lower cutoff (pink), and 1.0 was set as the upper cutoff (dark green). Values in between are color-coded using a
gradient. On the right, an overview of the means for the results of the corresponding query is provided. Here, 0.40 was selected as the lower cutoff
(pink) and 0.85 as the upper cutoff (dark green).
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increased standard deviations.62−66 In the case of the other
Chemical Spaces, a lower average molecular similarity leads to
more compounds with a correspondingly lower score, which is
reflected in a smaller standard deviation. Translated to this
scenario, it means that the Chemical Spaces with a low SD
(GalaXi, CHEMriya, and AMBrosia) provide results with a
lower similarity score in general, but all of which are equally
similar to the query. Chemical Spaces with a higher SD (eXplore,
Freedom Space, and REAL Space) provide more results with
higher similarity, but the score declines more along the top 100
ranks. Further assessment of the data is provided in the fCSFP4
SD result section below.
Furthermore, trends similar to those of FTrees were observed

regarding the quadrant distributions of rank 1 ECFP4
SpaceLight results with a fingerprint similarity of 1.0 (see
Table S5 of the Supporting Information).
Similarly to the evaluation of the FTrees results, three

categories for themeans of all results for a query compoundwere
introduced to visualize the distribution across the quadrants. For

very similar compounds, a range of 0.85 to 1.0 was defined; for
related compounds, a range of 0.65 to 0.85; and for more
distantly related structures, a range of 0.45 to 0.65. The
molecular landscapes can be found in Figure S2 of the
Supporting Information. We acknowledge that the ECFP4
boundaries may vary depending on the project and compound
classes. In this case, they serve merely as a rough categorization
of the results for an easier visual assessment.
The overall distribution of fCSFP4 scores per query

compound is depicted in Figure 9. Looking at the means for
the results per Set S query, eXplore, REAL Space, and Freedom
Space once again show the best results followed by AMBrosia,
GalaXi, and CHEMriya. Analogous to the ECFP4 molecular
fingerprint results, the lowest SD values were observed for
GalaXi, CHEMriya, and AMBrosia. Higher SD values were
recorded for Freedom Space, eXplore, and REAL Space.
As a third method to mine for relevant chemistry from

commercial Chemical Spaces, SpaceMACS was applied. The
overview of the chemical space coverage is presented in Figure

Figure 9. Overview of the fCSFP4 SpaceLight assessment of commercial Chemical Spaces. Point coordinates correspond to those of the associated
SetS query compound. The molecular fingerprint similarity of the highest-ranking compound in the corresponding Chemical Spaces is shown on the
left. For color coding, 0.40 was set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values in between are color-coded using a
gradient. On the right, an overview of the means for the results of the corresponding query is provided; 0.40 was selected as the lower cutoff (pink) and
0.85 as the upper cutoff (dark green). No significant changes compared to ECFP4 were observed in the distribution across the quadrants (see Table S5
of the Supporting Information). The molecular landscapes of result categorization by similar compounds (range 0.85 to 1.0), related compounds
(range 0.65 to 0.85), and more distantly related structures (range 0.45 to 0.65) can be found in Figure S3 of the Supporting Information. Ranges were
kept consistent with those of the above-mentioned ECFP4 definitions.
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Figure 10. Overview of the SpaceMACS assessment of commercial Chemical Spaces. Point coordinates correspond to those of the associated Set S
query compound. The SpaceMACSMCS score of the highest-ranking compound in the corresponding Chemical Spaces is shown on the left. For color
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10. For the distribution among the quadrants, only minor

fluctuations in the SpaceMACS results compared to the FTrees

and SpaceLight results were observed.

Summarizing the observations made for all three search
methods, the following statements can be made: All three search
methods successfully mined relevant chemistry from the
Chemical Spaces. The fundamental trends were consistent

Figure 10. continued

coding, 0.50 was set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values in between are color-coded using a gradient. On the
right, an overview of the means for the results of the corresponding query is provided. To better assess the distribution of the mean values per query,
two ranges were provided: 0.80 to 1.0 for similar results and 0.50 to 1.0 for more distantly related structures. In both cases, the lower cutoff is colored
pink.

Figure 11.Overview of the FTrees assessment of commercial compound libraries. Point coordinates correspond to those of the associated Set S query
compound. The FTrees similarity score of the highest-ranking compound in the corresponding vendor is shown on the left. For color coding, 0.90 was
set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values in between are color-coded using a gradient. On the right, an overview of
the means for the results of the corresponding query is provided.
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across all three methods, with Q1 providing the best coverage
and Q3 the second-best coverage of the result molecules with a
similarity of 1.0. Consequently, relatively simpler and lipophilic
molecules were predictably the most frequently found in the
Chemical Spaces. Due to the stereochemically agnostic scoring
of FTrees, the percentage was further increased. Significantly
lower coverage of the chemical landscape was observed for Q2
and particularly Q4, which may be associated with the increased
complexity of the compounds and the corresponding multistep
synthesis. This could also be linked to missing reactions in the
definition of the Chemical Spaces or the absence of appropriate
building blocks.

Commercial Libraries. To put the results into a broader
context, conventional enumerated commercial compound

libraries were also analyzed for their chemical diversity in a
manner analogous to that of the aforementioned methods. The
undeniable advantage of these enumerated catalogs is that their
data format (typically SMILES or SDF) is natively supported by
most computational tools, making them accessible for a broader
client base. The combinatorial nature of Chemical Spaces, on
the other hand, demands the usage of dedicated algorithms that
were developed to efficiently operate in their architecture.
For the comparative analysis, four libraries from different

compound providers were selected: “Representative Diversity
Library” by ChemDiv (1.5 × 105 compounds), “HTS
Compound Collection” by Life Chemicals (5.7 × 105), “Drug-
Like Compounds Library” by Molport (1.8 × 106), and “Mcule
Full” by Mcule (5.9 × 106). We decided to investigate

Figure 12.Overview of ECFP4 SpaceLight assessment of the commercial compound libraries. Point coordinates correspond to those of the associated
Set S query compound. The molecular fingerprint similarity of the highest-ranking compound in the corresponding library is shown on the left. For
color coding, 0.40 was set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values in between are color-coded using a gradient. On
the right, an overview of the means for the results of the corresponding query is provided; 0.40 was selected as the lower cutoff (pink) and 0.85 as the
upper cutoff (dark green).
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Figure 13.Overview of the SpaceMACS assessment of commercial compound libraries. Point coordinates correspond to those of the associated Set S
query compound. The SpaceMACS MCS score of the highest-ranking compound in the corresponding library is shown on the left. For color coding,
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enumerated sets from vendors that do not possess a Chemical
Space to evaluate the results in a highly distinguishable manner.
In doing so, we ensured that libraries of different sizes were
selected to identify any potential effect of the number of
molecules on the diversity of the compounds. All libraries were
accessed in December 2024 and analyzed with the aforemen-
tioned three algorithms (FTrees, SpaceLight, and SpaceMACS).
Using Set S as the query, 100 results were retrieved for each
entry.
The FTrees insights are summarized in Figure 11. The highest

similarity mean score, based on the 100 results for each
processed query molecule, was calculated for Mcule followed by
those for Molport, Life Chemicals, and finally ChemDiv. The
lowest SD for the top 100 averages was observed for Molport
followed by Life Chemicals, Mcule, and ChemDiv.
Similar to the investigated Chemical Spaces, the commercial

libraries also show that a majority of closely rated hit compounds
are located in Q1.
The SpaceLight search with ECFP4 delivered the same

ranking in terms of compounds with a similarity of 1.0: Mcule on
top followed by Molport, Life Chemicals, and ChemDiv last.
The SpaceLight results are summarized in Figure 12. Applying
fCSFP4 in SpaceLight led to similar results. Furthermore, the
majority of the top results with a similarity of 1.0 for both ECFP4
and fCSFP4 were again located in Q1 for all of the investigated
sources.
The SpaceMACS screening runs are summarized in Figure 13.
To compare the results of combinatorial Chemical Spaces and

enumerated library searches, several design aspects need to be
addressed.

We take into account that the results discussed here do not
fully represent the complete coverage capacity of the chemical
space in terms of the availability of individual compounds by
each vendor, as only individual libraries were selected. A set
tailored for chemical diversity can deliberately not include all in-
house compounds, with the aim of maintaining a manageable
size that can be efficiently screened using common programs.
Furthermore, it should be emphasized that the size difference
between the libraries and the Chemical Spaces influences the
availability of closely related molecules and consequently also
the associated values such as mean and SD. Given a difference of
7 orders of magnitude between the smallest library (ChemDiv
with 1.5 × 105 compounds) and the largest investigated
Chemical Space (eXplore with 5.0 × 1012 compounds), it is
undeniably likely that the latter will contain significantly more
related substances to a query compound than a library that is 10
million times smaller. Another point is the fact that libraries can
be deliberately enriched with relevant molecules (those reported
as bioactive) to increase the relevance of the set for research
purposes. The observations below regarding SD differences
suggest, at least, that for particularly closely related rank 1
results, there is a much more pronounced decline in similarity
scores for the enumerated libraries compared to the Chemical
Spaces.
In contrast, Chemical Spaces can be indirectly enriched with

bioactive substances only by incorporating appropriate building
blocks and reactions. The coverage of the bioactive landscape is
merely a consequence of the combinatorial explosion of possible
compounds. However, in the case of SpaceMACS, it should be
noted that if a building block itself already matches a query, then

Figure 13. continued

0.50 was set as the lower cutoff (pink) and 1.0 as the upper cutoff (dark green). Values in between are color-coded using a gradient. On the right, an
overview of the means for the results of the corresponding query is provided. To better assess the distribution of the mean values per query, two ranges
were provided: 0.80 to 1.0 for similar results and 0.50 to 1.0 for more distantly related structures. In both cases, the lower cutoff is colored pink.

Figure 14. Density plot for the PCA of Set S. Ten density levels are displayed with the more intense hues in the highly dense areas. The previously
discussed quadrants are represented as dashed areas: Q1 in dark green (upper left corner), Q2 in dark blue (upper right corner), Q3 in light green
(bottom left corner), and Q4 in light blue (bottom right corner).
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it will appear as a result. This means that larger molecules similar

to a product can theoretically be introduced into Chemical

Spaces as needed. In practice, however, this is only applied to a

limited extent, as size filters exclude such molecules to keep the
size of the products within a relevant range (e.g., drug-like).
In the context of this study, collection-focused decisions can

lead to underrepresentation of certain compound classes. For

Figure 15. Overview of the chemical landscape distribution for rank 1 results of investigated commercial Chemical Spaces and the applied search
algorithms as density plots. For each distribution, a 10-level representation was selected. Corresponding quadrants of Set S are depicted in overlay: Q1
in dark green (upper left corner), Q2 in dark blue (upper right corner), Q3 in light green (bottom left corner), and Q4 in light blue (bottom right
corner).
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example, the deliberate choice to offer a drug-like library may
result in the exclusion of bRo5 compounds or natural-product-
like classes (e.g., nucleotides and aminoglycosides), which is
reflected in the chemical coverage of the results. In Chemical
Spaces, this aspect is controlled by setting or omitting size filters
on the building blocks, thereby determining the molecular
weights of the resulting products. Consequently, filtering based
on other parameters such as substructure, number of H-bond
donors/acceptors, and others influences the chemical space
coverage.

Assessment of Retrieved Results in regard to
Chemical Space Coverage. One of our major interests was
to employ the generated benchmark Set S to investigate the
chemical space coverage by commercial compound sources.
Considering the collected observations, the search results of the
Chemical Spaces and enumerated libraries were then further
analyzed. In particular, the question of the coverage of the
chemical landscape defined by Set S is of interest.
To address this, the corresponding PC1 and PC2 values of the

mined molecules were calculated along with their computed
parameters (atomic polarizability, cLogP, number of H-bond
donors and acceptors, stereocenters and rotatable bonds, PSA,

and shape index) and the coefficients from the PCA to define
their position in chemical space. Subsequently, the following
density plots were created: one for Set S, as well as density plots
for all sources and search methods to represent the results with
rank 1 and the top 10 ranking results, to allow a visual evaluation
of the Chemical Spaces, libraries, and the algorithms used.
As expected, the density plot of Set S (see Figure 14) shows a

homogeneous distribution, which corresponds to the nature of
the random selection of up to 30 possible compounds from the
10 × 10 segment matrix described above. Dense clusters
(highest density level) can be found particularly in three central
areas: in the intersection of Q1 and Q3, around the central point
where all four quadrants meet, and in the middle between Q2
and Q4.
The Chemical Spaces consistently exhibit high compound

densities proximal to the centroid of the PC matrix, with a drift
toward Q1 and Q3. Molecules in this area have a molecular
weight (MW) between approximately 250 and 500 Da, a clogP
between −1 and 5, hydrogen bond acceptors between 0 and 9,
and donors between 0 and 3, classifying them as typically drug-
like. Consequently, the Chemical Spaces particularly cover the

Figure 16.Overview of the chemical landscape distribution for rank 1 results of investigated commercial libraries and the applied search algorithms as
density plots. For each distribution, a 10-level representation was selected. Corresponding quadrants of Set S are depicted in overlay: Q1 in dark green
(upper left corner), Q2 in dark blue (upper right corner), Q3 in light green (bottom left corner) and Q4 in light blue (bottom right corner).
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area that is commonly explored for hit discovery and extension
via analogs.
This trend is evident both for the rank 1 results (Figure 15)

and the top 10 ranking compounds (see Figure S4). While the
overall coverage of Q1 and Q3 is good across all examined
Chemical Spaces, significantly weaker coverage is observed for
Q2 and Q4. In particular, the edges of both quadrants are
underpopulated, leading to the following conclusions about the
retrieved compounds: Chemical Spaces provide relatively less
good results for complex, hydrophilic compounds (e.g.,
nucleotides/nucleoside analogs, an increased proportion of
charged groups such as amines, carboxylic acids, or guanidines).
The same applies to compounds with a natural-product-like
character (e.g., sp3-rich carbon systems, opioid-related struc-
tures). Possible causes for this behavior include the availability of
functionalizable building blocks for natural-product-like com-
pounds; the absence of reactions to create the involved
molecular scaffolds; the increased reactivity of more hydrophilic
building blocks, which can lead to their exclusion in reaction
definitions; as well as the synthetic complexity of these
compounds, which may not be achievable through a one- or
two-step synthesis (e.g., nucleotides67). The less complex
compounds, which can be straightforwardly assembled from
two to four building blocks, are more accessible and therefore
constitute the majority of the retrieved results.
None of the examined Chemical Spaces exhibited extremely

divergent behavior in terms of coverage based on physicochem-

ical properties of the retrieved compounds. Proportionally,
eXplore showed the greatest coverage of Q2 and Q4 among all
Spaces. Additionally, the density clustering of compounds in
eXplore is closer to the centroid of the matrix compared to all
other Spaces, which consequently leads to an increase in the
average molecular weight as well as the number of hydrogen
bond donors and acceptors. Regarding drug-like results,
Freedom and REAL Space consistently maintained a strong
focus on them for all three applied methods. In the case of
AMBrosia and GalaXi, the zone with the highest population
density projects the least into the Q3 region, indicating slightly
lower coverage of complex compounds.
As for the methods, all three algorithms produced similar

density distributions across the different Spaces. In detail,
FTrees occasionally exhibits the formation of clustering islands
in the case of AMBRosia, CHEMriya, and eXplore due to
delineations, which may indicate homogeneity in the
physicochemical properties of the compounds. This behavior
could be driven by the building blocks used and their assembly
into specific molecular scaffolds.
Compared to FTrees, the ECFP4 and fCSFP4 SpaceLight

results indicate no significant change in chemical landscape
coverage of the Chemical Spaces. Again, clustering was observed
for eXplore. Interestingly, REAL Space also showed clustering
points in the fCSFP4 search that were not observed in the other
methods. Such behavior may, in individual cases, be related to
the captured features of the used fingerprints and the coupling

Figure 17. Mean similarity score development within the top 100 retrieved results for queries with an SD ≥ 0.05 (SpaceLight) or SD ≥ 0.03
(SpaceMACS). Results for the Chemical Spaces are shown on the left, while results for the enumerated libraries are on the right.
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reactions of the chemical spaces, leading to structurally different
assembled result molecules.
Lastly, a trend observed for SpaceMACS was the increase in

density in the drug-like region for all the examined Spaces. A
possible reason for this could be that the MCS matching
predominantly favors more common scaffolds, which are also
found in drug-like compounds.
In summary, the largest proportion of results retrieved by the

three methods was in the range of classical drug-like structures.
The evaluation of the top 10 ranking results showed no
significant changes in the coverage landscapes. The addition of
further compounds led to an increased enrichment in the drug-
like region accompanied by a decline in isolated clusters (see
Figure S5).
For comparison, the results from commercial compound

libraries were also analyzed for their distribution (Figure 16).
Interestingly, significant differences were observed compared to
combinatorial Chemical Spaces. The libraries of ChemDiv, Life
Chemicals, and Molport are noticeably more compact, trans-
lating into the reduced presence of borderline compounds. All
four examined libraries maintained the highest density in the
drug-like area.
A unique characteristic of Molport’s method was the presence

of molecules in Q2. Mcule, on the other hand, exhibited a
broader distribution compared with the other three libraries and
Chemical Spaces. Interestingly, it projected more into Q2 and
Q4, indicating greater diversity in the physicochemical proper-
ties of the results. As already observed with the Chemical Spaces,
expanding to the top 10 ranking results centers the density in the
area of drug-like structures for all commercial libraries (see
Figure S5).
The density plots suggest that the commercial libraries also

may serve as sources for drug-like compounds, with Mcule, as
the largest investigated library, showing the widest coverage
beyond conventional structures among the examined sets.

Analysis of the Scoring Behavior within the Retrieved
Results. To gain further insights into the performance of the
Chemical Spaces and libraries, the scoring within the top 100
retrieved results was analyzed in more detail. For SpaceLight,
query results from the respective Chemical Spaces, and
consequently the libraries, with an SD ≥ 0.05 (approximately
2-fold of the average SDs) were uniformly examined. The top-
ranking results, as well as the scores for the remaining results,
were considered and grouped into rank clusters of 20. The
corresponding mean score was then calculated for each cluster
(see Tables S6 and S7). The results are visualized in Figure 17.
Consistently, the score for rank 1 and the cluster means

exceeded the average values for the respective Space, with
eXplore, Freedom Space, and REAL Space continuing to deliver
the best results. As previously described, it became evident that
rank 1 results were followed by the highest drops in scores for
eXplore, Freedom Space, and REAL Space in the case of ECFP4.
For the fCSFP4 results, the trend shifted: Fingerprint scores
dropped for AMBrosia the most between rank 1 and ranks 1 to
20, followed by GalaXi, Freedom Space, CHEMriya, REAL
Space, and eXplore. In contrast to ECFP4, which showed
double-digit percentage decreases in the mean of ranks 1 to 20
compared to the mean of the rank 1 compounds (19.1 to
22.0%), only single-digit percentage decreases were observed in
the case of fCSFP4 (2.4 to 9.9%). This may imply that fCSFP4 is
particularly capable of delivering more similar compounds to the
query in the top ranks than ECFP4 when applied to
combinatorial Chemical Spaces. Another possible explanation

is that fCSFP4’s distribution behaves fundamentally differently
from ECFP4’s due to its feature capture, which has already been
reported for other fingerprint methods.64 It should be noted that
a similar SD assessment for FTrees is only partially applicable
and comparable as FTrees provides a narrower range of
similarity scores. Furthermore, FTrees can assign identical
scores to stereoisomers, meaning that multiple results may have
a score of 1.0, which, in turn, reduces the SD. Therefore, the
proportionality of the SD to the quality of the results must be
considered in the context of each algorithm.
While the Chemical Spaces showed a range of 87 to 331

queries with an SD ≥ 0.05 for ECFP4, the libraries ranged from
77 to 725. For fCSFP4, the ranges were 96 to 281 (Chemical
Spaces) and 173 to 785 (libraries), and for SpaceMACS, they
were 113 to 296 (Chemical Spaces) and 1,111 to 1,800
(libraries). Approximately 10% of the queries yielded results
with a broad similarity distribution for the Chemical Spaces, and
this proportion increased up to over 50% when applying the
same parameters to the libraries. The 10% observation for
Chemical Spaces can be connected to the utilization of the 0.05
SD cutoff, which is approximately 2 times larger than the average
SD of the Spaces. This effect was particularly pronounced in the
Mcule set, which exhibited the greatest fluctuations in the SD
across all three searches.
Furthermore, analyzing the similarity scores within the top

100 ranks per query can provide valuable insights into the set’s
ability to include relevant chemistry for a search query. In direct
comparison, the similarity of the top-ranking compound to the
next 20 ranks decreases much more rapidly for the libraries than
for the Chemical Spaces. It is worth noting that the means of the
rank 1 results with an increased SD were above the mean of all
rank 1 results for the respective data set, suggesting that well-
scoring structures were found in these cases, whereas for those
with a lower SD value, generally lower-scoring compounds were
retrieved. It can therefore be generalized that when good results
are found, they inevitably bring along additional results with
lower scores, which are reflected in an increased SD.
In the case of the SpaceMACS results, the lowest SD values

were obtained for GalaXi followed by eXplore, CHEMriya and
AMBrosia, and Freedom Space and REAL Space. Since we were
interested in how those values can be coupled to the quality of
the results, we performed an analogous assessment to the
SpaceLight results mentioned above. For SpaceMACS, an SD
cutoff of ≥ 0.03 was selected (approximately 2-fold of the
average SDs) for the results per query with high fluctuations in
their mean similarity score (see Table S6 of the Supporting
Information). The mean of MCS similarities of results per query
with SD ≥ 0.03 was higher than the mean of the results for the
whole respective Chemical Space, which equates to better
results for those queries. Since the ranges of score decreases per
cluster transition are quite similar across all Chemical Spaces, no
general conclusion about the behavior and parameters of the
results can be drawn. Given the fact that many identical
molecules (those with an MCS similarity of 1.0) as well as those
with fairly good scores are found among those with an SD> 0.03,
it suggests the possibility that the higher average scores of a
Chemical Space for individual results contribute to fluctuations,
while the majority of lower scores pull the SD values down. An
additional interplay with a larger number of structurally similar
analogs, influenced by the size of the Chemical Space, adds
further complexity to these relationships.
This insight is important because it provides information

about the quality of the retrieved results for the respective data
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sets. In comparison, the combinatorial Chemical Spaces
performed better across all three searches (SpaceLight ECFP4
and fCSFP4, as well as SpaceMACS) than the enumerated
libraries. The decline in mean similarities across the rank clusters
is more pronounced for the libraries than for the Chemical
Spaces, meaning that the best-performing library manages to
keep up with only the worst-performing Chemical Space.
To further look into the capacities to provide related

structures to a query compound, we performed another analysis
of the compound sources. Using the ECFP4 SpaceLight results,
we examined how many of the 100 retrieved results for a query
compound of Set S have a score ≥ 0.45. The premise is that an
ECFP4 score of ≥ 0.45 is still considered to be of a relevant
similarity. It was observed that Chemical Spaces were able to
provide at least 50 structurally related analogs for up to 46% of
the queries in the best case (eXplore), whereas the best-
performing library (Mcule) achieved this in only 17% of the
cases (2.7-fold difference) (see Figure 17). The performance
ranking of the sources remained the same with regard to the
ability to deliver at least 100 relevant results for a query

compound. Mcule was the only library able to outperform
CHEMriya, but it still fell short of the capacities of the other
Chemical Spaces.
The percentage decline in similarity from one rank cluster to

the next converges to similar levels. Combined with the previous
observation that Chemical Spaces perform better on average,
this suggests that Chemical Spaces provide more similar
compounds that also exhibit higher similarity scores than the
investigated libraries. This leads to the presence of more analogs
in Chemical Spaces alongside the top-ranking result, expanding
the molecular portfolio for hit exploration, lead optimization,
scaffold hops, and SAR studies.
Furthermore, the lower percentage decrease within the

fCSFP4 search compared with the ECFP4 search indicates
that this fingerprint variant performs more robustly in Chemical
Spaces. While both fingerprint variants exhibited comparable
performance in the enumerated sets, even across the respective
libraries�similar to SpaceMACS on the same sets�the
performance of fCSFP4 in Chemical Spaces was on par with
that of SpaceMACS. While all methods can be applied to

Figure 18. UMAP analysis of Chemical Spaces with the respective coloring by the source and applied search method. The used ChEMBL query
compounds (9−20; for structures, see Figure 4) are highlighted in purple.
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enumerated data sets, the fCSFP4 variant and SpaceMACS were
specifically developed for use on combinatorial Chemical Spaces
which is not the case for ECFP4.13,14 Thus, these observations
are consistent with previous studies and the corresponding
expectations.
For the final comparative assessment of the chemical diversity

of the retrieved molecules, a uniform manifold approximation
and projection (UMAP) analysis was conducted. UMAP, like
PCA, is widely applied to reduce high-dimensional molecular
descriptor data into a visual representation to facilitate the
interpretation of molecular relationships within a compound set.
An example of typical UMAP mapping of a query compound
and results of the three search methods used in the study are
shown in Figure S6 of the Supporting Information.
For the UMAP visualization, the 12 compounds from Figure 4

of Set S and their retrieved results from the Chemical Spaces and
libraries were selected. For the generation of the 2D UMAP
analysis, the ECFP4 fingerprint was used by default as a
similarity score for determining the relationships of the
molecules with the following parameters: n_neighbors = 50,

min_dist = 0.8, random_state = 42. The corresponding 2D
representations by method and compound source are
summarized in Figures 18 and 19.
From the representations of the Chemical Spaces, the

following insights can be drawn: For each query compound, a
distinct cluster of results is formed that is visually separated from
the others. Within the clusters, the applied search methods can
largely be distinguished from one another.
As expected, the FTrees results were the farthest from the

coordinates of the query compound because the search
algorithm operates independently of the connectivity of heavy
atoms within the query molecule and rather captures the
pharmacophore features of its increments. By using ECFP4 for
mapping, it is placed in context with the query compound
through an orthogonal method, leading to a shift of the results.
In contrast, the methods SpaceLight and SpaceMACS, which
depend on the connectivity of heavy atoms, show a significantly
closer proximity to the query compound.
Regarding the differences within the Chemical Spaces,

CHEMriya and GalaXi particularly exhibit the most outliers

Figure 19. UMAP analysis of commercial libraries with the respective coloring by source and applied search method. The used ChEMBL query
compounds (9−20; for structures, see Figure 4) are highlighted in purple.
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beyond the dense clusters. In contrast, the retrieved results from
eXplore and REAL Space are predominantly located close to the
coordinates of the query compounds. The still-possible visual
distinction by source within the clusters themselves also leads to
the conclusion that each Chemical Space carries a high
proportion of unique scaffolds and chemistry, which aligns
with previous studies.15,21,22

Subsequently, an analogous analysis was also conducted for
the commercial enumerated libraries. The visualization is
depicted in Figure 19.
In direct comparison to the visualization of the Chemical

Spaces, it is noticeable that no distinct clusters are formed
around or in the periphery of the query compounds, making the
results appear significantly more homogeneous. Again, a trend
emerges where FTrees exhibit the greatest distance to the query
compounds, with the fingerprint-based results from SpaceLight
also frequently deviating. The previously observed uniqueness of
the Chemical Space results within a cluster cannot be observed
in the case of the libraries. The sets seem to provide much more
unified results where a precise assignment to the query
compound or a source is not clearly possible. The increased
absence of Mcule and Molport outside the cluster assemblies
provides an indication that the associated results are closest to
those of the query compounds. Most of the outliers therefore
emerged from the ChemDiv and Life Chemicals sets, which in
turn reflect the calculated means for the libraries and applied
methods.
In summary, UMAP analysis showed that each of the applied

search methods was able to enrich individual chemical diversity.
Additionally, the different Chemical Spaces provided unique
molecular scaffolds with only minimal overlap between the
various sources. However, structural distinction was absent in
the case of the libraries: The results suggest that even among the
top 100 ranking compounds, it becomes difficult with the
applied methods to distinguish which query a result belongs to.
Considering which similarity score range can still be deemed
“acceptable” to classify a result as similar to a query compound,
especially when lower ranks display significant similarity to
another, structurally unrelated query compound, this issue
emphasizes the capacity limits of the commercial libraries or too-
small molecule sets in general.

Computation Time. To process the searches using Set S as
queries (2,917 entries), computation times for the Chemical
Spaces ranged from 11 to 1386 min. Notably, REAL Space
showed particularly long computation times. In the case of the
enumerated libraries, computation times ranged from 9 to
37,470 min. The results and the description of the hardware
used can be found in Figure S7 of the Supporting Information.
When the number of compounds contained in a source is

compared relative to the time required for screening, the
following performance ratios can be established for the tools
used: FTrees was able to search Chemical Spaces 3000 to 1.5 ×
107 times faster than the libraries, and SpaceLight achieved 2500
to 2.8 × 106 times faster performance in the case of ECFP4 and
2200 to 1.9 × 106 times faster for fCSFP. SpaceMACS
demonstrated the highest efficiency, being 48,000 to 1.8 × 108
times faster.
However, it must be explicitly emphasized that the tools used

were designed for combinatorial Chemical Spaces and therefore
operate optimally within them. While they are capable of
processing standard SD files, they do so less efficiently. In this
sense, the resulting bias should be acknowledged.

■ CONCLUSIONS
Following is a summary of the efforts of this study: With the
vision of creating a highly relevant and versatile molecular set,
the ChEMBL database was searched for bioactive substances.
The raw set, consisting of approximately 11 million entries, was
systematically filtered to retain compounds commonly used in
modern drug discovery screenings. To exclude isolated activity
events outside of a compound series, molecules with fewer than
five members sharing a Bemis−Murcko scaffold were removed.
This process resulted in Set L (“large-sized,” 379,169
compounds), followed by additional downsizing steps leading
to Set M (“medium-sized,” 25,234 compounds) and Set S
(“small-sized,” 2,917 compounds). Set M contains only the
smallest representatives of each Bemis−Murcko scaffold group
from Set L. Set S was derived from a PCA analysis of Set M,
where outliers with extreme physicochemical and topological
properties were excluded. Randommolecules were then selected
from the resulting matrix to ensure homogeneous coverage of
chemical space and a comfortable size for computationally slim
assessments.
In the context of the applicability in drug discovery

campaigns, each set can be further filtered based on project-
specific needs, such as selecting compounds with drug-like
properties, fragments, or bRo5 characteristics. Furthermore, the
generated benchmark sets are suitable for a wide range of
computational tasks and applications in the context of both
ligand- and structure-based drug design. The three sets, each 1
order of magnitude larger than the previous one, can benefit not
only extensive but also moderate computations. Additionally,
they are well-suited as seeds for machine learning or artificial
intelligence applications, serving as starting points for the de
novo design of compounds with improved physicochemical or
pharmacological properties and iterations of molecular scaffolds.
Subsequently, Set S was used as queries to evaluate

commercial sources for compounds, namely, combinatorial
Chemical Spaces and enumerated vendor libraries, in terms of
their ability to provide similarity-based chemistry. In terms of
similarity means, eXplore and REAL Space consistently
performed best among the Chemical Spaces. Among the
libraries, Mcule’s “Full” library achieved the highest scores. A
trend was observed between library size and similarity scores
(both fingerprint- and MCS-based), where an increase in size
was associated with higher scores. Taking into account the
standard ECFP4 fingerprint, it was particularly the larger sets
that were able to deliver structurally relatedmolecules for a given
drug-like query (see Figure S8 of the Supporting Information).
However, it cannot be ruled out that the prior rational design of
the library contributes to this effect.
While both source architectures were able to cover the

chemical space around structures that comply with drug-like
physicochemical properties, the Chemical Spaces provided
more compounds whose average similarity was higher than that
of the libraries. In direct comparison, the best-performing
library, Mcule “Full”, was at the level of the Chemical Spaces
with the lowest mean similarity scores and chemical landscape
coverage. Especially considering that libraries can conveniently
be enriched with reported bioactive compounds, it is worth
highlighting that Chemical Spaces, solely through the use of
building blocks and reactions, can generate more and
structurally similar compounds related to a query. This is
particularly relevant when a compound is not identically present
in the collection, making alternative scaffolds the only option.
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Furthermore, this scenario extends tomore complex queries that
require multiple intricate synthesis steps, compounds that
depend on expensive or proprietary building blocks, and
structures that have not yet been commercially registered or
included in catalogs.
The three search methods used�FTrees, SpaceLight, and

SpaceMACS�were each able to extract individually diverse
chemistry based on different interpretations of similarity. This
can be leveraged in a project-specificmanner to generate tailored
libraries. Given the vast volume of Chemical Spaces, this opens
up opportunities to independently create customized enum-
erated compound libraries, comparable to the studied sets, on
the scale of millions. Given the size of the investigated sets, the
search algorithms performed more efficiently on the combina-
torial Chemical Spaces based on the required computation time
per compound.
Our analysis suggests that there is still significant development

potential for bRo5 compounds in both Chemical Spaces and
commercial libraries. As expected, more complex compounds
were less well represented in commercial sources compared to
classic drug-like compounds. In the case of Chemical Spaces,
this also covers compounds with hydrophilic groups that cannot
be made in one or two steps due to the potential reactivity of the
functionalities in the associated building blocks that may lead to
unwanted byproducts during the synthesis. This suggests that
additional reactions are needed to capture this uncharted area, a
problem well-known in medicinal chemistry,54,68,69 or that an
additional layer of synthesis processing must be introduced,
including the possible use of protecting groups, which could
ultimately lead to the desired product. Furthermore, our analysis
suggests that the coverage of more lipophilic substances can be
improved by expanding the portfolio of functionalizable natural
product-like and sp3-rich building blocks.
The highlighted potential extends beyond ligand-based

applications: access to more and more relevant structures is
equally crucial in a structure-focused context to identify the best
possible candidates for follow-up. Several virtual screening
campaigns involving combinatorial Chemical Spaces have
already demonstrated the superiority of larger hunting
grounds.70−72

These findings will contribute to the development of a holistic
understanding of the chemical space. Furthermore, they will aid
in identifying gaps in the molecular class landscape that require
improvement and in enhancing their accessibility.
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Targets Benefit from beyond Rule of Five Drugs. J. Med. Chem. 2019, 62
(22), 10005−10025.
(42) DeGoey, D. A.; Chen, H.-J.; Cox, P. B.; Wendt, M. D. Beyond the
Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound
Collection. J. Med. Chem. 2018, 61 (7), 2636−2651.
(43) O’Reilly, M.; Cleasby, A.; Davies, T. G.; Hall, R. J.; Ludlow, R. F.;
Murray, C. W.; Tisi, D.; Jhoti, H. Crystallographic Screening Using
Ultra-Low-Molecular-Weight Ligands to Guide Drug Design. Drug
Discovery Today 2019, 24 (5), 1081−1086.
(44)Doak, B. C.; Norton, R. S.; Scanlon,M. J. TheWays andMeans of
Fragment-Based Drug Design. Pharmacol. Ther. 2016, 167, 28−37.
(45) Yu, X.; Sun, D. Macrocyclic Drugs and Synthetic Methodologies
toward Macrocycles. Molecules 2013, 18 (6), 6230−6268.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c00719
J. Chem. Inf. Model. 2025, 65, 9097−9124

9123

https://doi.org/10.1021/acs.jcim.2c01253?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01253?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01253?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://new.enaminestore.com/
https://doi.org/10.1038/d41586-019-00145-6
https://doi.org/10.1038/s41589-022-01234-w
https://doi.org/10.1038/s41589-022-01234-w
https://doi.org/10.1038/s41589-022-01233-x
https://doi.org/10.1016/j.sbi.2023.102578
https://doi.org/10.3390/molecules24173096
https://doi.org/10.3390/molecules24173096
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1016/j.drudis.2019.02.013
https://doi.org/10.1002/minf.202400114
https://doi.org/10.1002/minf.202400114
https://doi.org/10.1023/A:1008068904628
https://doi.org/10.1023/A:1008068904628
https://doi.org/10.1021/acs.jcim.0c00850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00640?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/minf.202200163
https://doi.org/10.1002/minf.202200163
https://doi.org/10.1002/minf.202400263
https://doi.org/10.1002/minf.202400263
https://doi.org/10.1002/minf.202400263
https://doi.org/10.1021/acs.jcim.3c00719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00811?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c00811?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/minf.202100289
https://doi.org/10.1002/minf.202100289
https://doi.org/10.1021/acs.jcim.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmedchemlett.3c00021?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmedchemlett.3c00021?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D1MD00363A
https://doi.org/10.1039/D1MD00363A
https://doi.org/10.1002/minf.202400265
https://doi.org/10.1002/minf.202400265
https://doi.org/10.1186/s13321-017-0212-4
https://doi.org/10.1186/s13321-017-0212-4
https://doi.org/10.1146/annurev-pharmtox-010919-023324
https://doi.org/10.1146/annurev-pharmtox-010919-023324
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1186/s13321-022-00590-y
https://doi.org/10.1186/s13321-022-00590-y
https://doi.org/10.1038/s42004-024-01204-4
https://doi.org/10.1038/s42004-024-01204-4
https://doi.org/10.3390/molecules27082513
https://doi.org/10.3390/molecules27082513
https://doi.org/10.1186/s43556-023-00138-y
https://doi.org/10.1186/s43556-023-00138-y
https://doi.org/10.3390/ijms21124380
https://doi.org/10.3390/ijms21124380
https://doi.org/10.3390/ijms21124380
https://doi.org/10.1007/s10822-015-9860-5
https://doi.org/10.1007/s10822-015-9860-5
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1016/j.drudis.2023.103760
https://doi.org/10.1016/j.drudis.2023.103760
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1016/j.bmcl.2018.12.001
https://doi.org/10.1021/acs.jmedchem.8b00686?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.8b00686?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.phrs.2023.106774
https://doi.org/10.1016/j.phrs.2023.106774
https://doi.org/10.1080/17460441.2017.1264385
https://doi.org/10.1080/17460441.2017.1264385
https://doi.org/10.1021/acs.jmedchem.8b01732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.8b01732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.7b00717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.7b00717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.7b00717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.drudis.2019.03.009
https://doi.org/10.1016/j.drudis.2019.03.009
https://doi.org/10.1016/j.pharmthera.2016.07.003
https://doi.org/10.1016/j.pharmthera.2016.07.003
https://doi.org/10.3390/molecules18066230
https://doi.org/10.3390/molecules18066230
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(46) Zalessky, I.; Wootton, J. M.; Tam, J. K. F.; Spurling, D. E.;
Glover-Humphreys, W. C.; Donald, J. R.; Orukotan, W. E.; Duff, L. C.;
Knapper, B. J.; Whitwood, A. C.; Tanner, T. F. N.; Miah, A. H.; Lynam,
J. M.; Unsworth, W. P. A Modular Strategy for the Synthesis of
Macrocycles and Medium-Sized Rings via Cyclization/Ring Expansion
Cascade Reactions. J. Am. Chem. Soc. 2024, 146 (8), 5702−5711.
(47) Zhu, Z.; Shaginian, A.; Grady, L. C.; O’Keeffe, T.; Shi, X. E.;
Davie, C. P.; Simpson, G. L.; Messer, J. A.; Evindar, G.; Bream, R. N.;
Thansandote, P. P.; Prentice, N. R.; Mason, A. M.; Pal, S. Design and
Application of a DNA-Encoded Macrocyclic Peptide Library. ACS
Chem. Biol. 2018, 13 (1), 53−59.
(48) Chai, J.; Arico-Muendel, C. C.; Ding, Y.; Pollastri, M. P.; Scott, S.;
Mantell, M. A.; Yao, G. Synthesis of a DNA-Encoded Macrocyclic
Library Utilizing Intramolecular Benzimidazole Formation. Bioconju-
gate Chem. 2023, 34 (6), 988−993.
(49) Pognan, F.; Beilmann, M.; Boonen, H. C.M.; Czich, A.; Dear, G.;
Hewitt, P.; Mow, T.; Oinonen, T.; Roth, A.; Steger-Hartmann, T.;
Valentin, J.-P.; Van Goethem, F.; Weaver, R. J.; Newham, P. The
Evolving Role of Investigative Toxicology in the Pharmaceutical
Industry. Nat. Rev. Drug Discovery 2023, 22 (4), 317−335.
(50) Ye, L.; Ngan, D. K.; Xu, T.; Liu, Z.; Zhao, J.; Sakamuru, S.; Zhang,
L.; Zhao, T.; Xia, M.; Simeonov, A.; Huang, R. Prediction of Drug-
Induced Liver Injury and Cardiotoxicity Using Chemical Structure and
in Vitro Assay Data. Toxicol. Appl. Pharmacol. 2022, 454, No. 116250.
(51) Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An
Open-Source Program For Chemistry Aware Data Visualization And
Analysis. J. Chem. Inf. Model. 2015, 55 (2), 460−473.
(52) Han, Z.; Shen, Z.; Pei, J.; You, Q.; Zhang, Q.; Wang, L.
Transformation of Peptides to Small Molecules in Medicinal
Chemistry: Challenges and Opportunities. Acta Pharm. Sin. B 2024,
14 (10), 4243−4265.
(53) Roughley, S. D.; Jordan, A. M. The Medicinal Chemist’s
Toolbox: An Analysis of Reactions Used in the Pursuit of Drug
Candidates. J. Med. Chem. 2011, 54 (10), 3451−3479.
(54) Brown, D. G.; Boström, J. Analysis of Past and Present Synthetic
Methodologies on Medicinal Chemistry: Where Have All the New
Reactions Gone? J. Med. Chem. 2016, 59 (10), 4443−4458.
(55) Ertl, P.; Altmann, E.; McKenna, J. M. The Most Common
Functional Groups in Bioactive Molecules and How Their Popularity
Has Evolved over Time. J. Med. Chem. 2020, 63 (15), 8408−8418.
(56) Mueller, L. G.; Slusher, B. S.; Tsukamoto, T. Empirical Analysis
of Drug Targets for Nervous System Disorders. ACS Chem. Neurosci.
2024, 15 (3), 394−399.
(57) Vasaikar, S.; Bhatia, P.; Bhatia, P.; Chu Yaiw, K. Complementary
Approaches to Existing Target Based Drug Discovery for Identifying
Novel Drug Targets. Biomedicines 2016, 4 (4), No. 27.
(58) Santos, R.; Ursu, O.; Gaulton, A.; Bento, A. P.; Donadi, R. S.;
Bologa, C. G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T. I.;
Overington, J. P. A Comprehensive Map of Molecular Drug Targets.
Nat. Rev. Drug Discovery 2017, 16 (1), 19−34.
(59) Schmidt, R.; Krull, F.; Heinzke, A. L.; Rarey, M. Disconnected
Maximum Common Substructures under Constraints. J. Chem. Inf.
Model. 2020, 61, 167.
(60) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf. Model. 2010, 50 (5), 742−754.
(61) Hartenfeller, M.; Eberle, M.; Meier, P.; Nieto-Oberhuber, C.;
Altmann, K. H.; Schneider, G.; Jacoby, E.; Renner, S. A Collection of
Robust Organic Synthesis Reactions for in Silico Molecule Design. J.
Chem. Inf. Model. 2011, 51 (12), 3093−3098.
(62) Venkatraman, V.; Gaiser, J.; Demekas, D.; Roy, A.; Xiong, R.;
Wheeler, T. J. DoMolecular Fingerprints Identify Diverse Active Drugs
in Large-Scale Virtual Screening?(No). Pharmaceuticals 2022, 17, 992.
(63) Skinnider, M. A.; Dejong, C. A.; Franczak, B. C.; McNicholas, P.
D.; Magarvey, N. A. Comparative Analysis of Chemical Similarity
Methods for Modular Natural Products with a Hypothetical Structure
Enumeration Algorithm. J. Cheminform. 2017, 9 (1), 46.
(64)Muegge, I.; Mukherjee, P. An Overview of Molecular Fingerprint
Similarity Search in Virtual Screening. Expert Opin. Drug Discovery
2016, 11 (2), 137−148.

(65) Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Orhan, I. E.;
Banach, M.; Rollinger, J. M.; Barreca, D.; Weckwerth, W.; Bauer, R.;
Bayer, E. A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G. K.;
Braidy, N.; Bucar, F.; Cifuentes, A.; D’Onofrio, G.; Bodkin, M.;
Diederich, M.; Dinkova-Kostova, A. T.; Efferth, T.; El Bairi, K.; Arkells,
N.; Fan, T.-P.; Fiebich, B. L.; Freissmuth, M.; Georgiev, M. I.; Gibbons,
S.; Godfrey, K. M.; Gruber, C. W.; Heer, J.; Huber, L. A.; Ibanez, E.;
Kijjoa, A.; Kiss, A. K.; Lu, A.; Macias, F. A.; Miller, M. J. S.; Mocan, A.;
Müller, R.; Nicoletti, F.; Perry, G.; Pittala,̀ V.; Rastrelli, L.; Ristow, M.;
Russo, G. L.; Silva, A. S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak,
K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D. S.; Stuppner, H.;
Sureda, A.; Tzvetkov, N. T.; Vacca, R. A.; Aggarwal, B. B.; Battino, M.;
Giampieri, F.; Wink, M.; Wolfender, J.-L.; Xiao, J.; Yeung, A. W. K.;
Lizard, G.; Popp, M. A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.;
Daglia, M.; Verpoorte, R.; Supuran, C. T. Natural Products in Drug
Discovery: Advances andOpportunities.Nat. Rev. Drug Discovery 2021,
20 (3), 200−216.
(66) Capecchi, A.; Probst, D.; Reymond, J.-L. One Molecular
Fingerprint to Rule Them All: Drugs, Biomolecules, and the
Metabolome. J. Cheminform. 2020, 12 (1), 43.
(67) Roy, B.; Depaix, A.; Périgaud, C.; Peyrottes, S. Recent Trends in
Nucleotide Synthesis. Chem. Rev. 2016, 116 (14), 7854−7897.
(68) Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Expanding
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